Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates

被引:950
作者
Cao, Qing [1 ]
Kim, Hoon-sik [2 ]
Pimparkar, Ninad [7 ]
Kulkarni, Jaydeep P. [7 ]
Wang, Congjun [2 ]
Shim, Moonsub [2 ]
Roy, Kaushik [7 ]
Alam, Muhammad A. [7 ]
Rogers, John A. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[5] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[7] Purdue Univ, Sch Elect & Comp Engn, Network Computat Nanotechnol, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature07110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to form integrated circuits on flexible sheets of plastic enables attributes (for example conformal and flexible formats and lightweight and shock resistant construction) in electronic devices that are difficult or impossible to achieve with technologies that use semiconductor wafers or glass plates as substrates(1). Organic small-molecule and polymer-based materials represent the most widely explored types of semiconductors for such flexible circuitry(2). Although these materials and those that use films or nanostructures of inorganics have promise for certain applications, existing demonstrations of them in circuits on plastic indicate modest performance characteristics that might restrict the application possibilities. Here we report implementations of a comparatively high-performance carbon-based semiconductor consisting of sub-monolayer, random networks of single-walled carbon nanotubes to yield small-to medium-scale integrated digital circuits, composed of up to nearly 100 transistors on plastic substrates. Transistors in these integrated circuits have excellent properties: mobilities as high as 80 cm(2)V(-1) s(-1), subthreshold slopes as low as 140 m V dec(-1), operating voltages less than 5 V together with deterministic control over the threshold voltages, on/off ratios as high as 10(5), switching speeds in the kilohertz range even for coarse (similar to 100-mu m) device geometries, and good mechanical flexibility - all with levels of uniformity and reproducibility that enable high- yield fabrication of integrated circuits. Theoretical calculations, in contexts ranging from heterogeneous percolative transport through the networks to compact models for the transistors to circuit level simulations, provide quantitative and predictive understanding of these systems. Taken together, these results suggest that sub-monolayer films of single-walled carbon nanotubes are attractive materials for flexible integrated circuits, with many potential areas of application in consumer and other areas of electronics.
引用
收藏
页码:495 / U4
页数:8
相关论文
共 43 条
  • [1] Sorting carbon nanotubes by electronic structure using density differentiation
    Arnold, Michael S.
    Green, Alexander A.
    Hulvat, James F.
    Stupp, Samuel I.
    Hersam, Mark C.
    [J]. NATURE NANOTECHNOLOGY, 2006, 1 (01) : 60 - 65
  • [2] Carbon-based electronics
    Avouris, Phaedon
    Chen, Zhihong
    Perebeinos, Vasili
    [J]. NATURE NANOTECHNOLOGY, 2007, 2 (10) : 605 - 615
  • [3] Ink-jet printing of carbon nanotube thin film transistors
    Beecher, P.
    Servati, P.
    Rozhin, A.
    Colli, A.
    Scardaci, V.
    Pisana, S.
    Hasan, T.
    Flewitt, A. J.
    Robertson, J.
    Hsieh, G. W.
    Li, F. M.
    Nathan, A.
    Ferrari, A. C.
    Milne, W. I.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (04)
  • [4] Large area, high resolution, dry printing of conducting polymers for organic electronics
    Blanchet, GB
    Loo, YL
    Rogers, JA
    Gao, F
    Fincher, CR
    [J]. APPLIED PHYSICS LETTERS, 2003, 82 (03) : 463 - 465
  • [5] Flexible nanotube electronics
    Bradley, K
    Gabriel, JCP
    Grüner, G
    [J]. NANO LETTERS, 2003, 3 (10) : 1353 - 1355
  • [6] CURING STUDIES OF A POLYIMIDE PRECURSOR .2. POLYAMIC ACID
    BREKNER, MJ
    FEGER, C
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1987, 25 (09) : 2479 - 2491
  • [7] Patterning organic single-crystal transistor arrays
    Briseno, Alejandro L.
    Mannsfeld, Stefan C. B.
    Ling, Mang M.
    Liu, Shuhong
    Tseng, Ricky J.
    Reese, Colin
    Roberts, Mark E.
    Yang, Yang
    Wudl, Fred
    Bao, Zhenan
    [J]. NATURE, 2006, 444 (7121) : 913 - 917
  • [8] Printed organic semiconducting devices
    Chason, M
    Brazis, PW
    Zhang, H
    Kalyanasundaram, K
    Gamota, DR
    [J]. PROCEEDINGS OF THE IEEE, 2005, 93 (07) : 1348 - 1356
  • [9] Self-aligned carbon nanotube transistors with charge transfer doping
    Chen, J
    Klinke, C
    Afzali, A
    Avouris, P
    [J]. APPLIED PHYSICS LETTERS, 2005, 86 (12) : 1 - 3
  • [10] An integrated logic circuit assembled on a single carbon nanotube
    Chen, ZH
    Appenzeller, J
    Lin, YM
    Sippel-Oakley, J
    Rinzler, AG
    Tang, JY
    Wind, SJ
    Solomon, PM
    Avouris, P
    [J]. SCIENCE, 2006, 311 (5768) : 1735 - 1735