State-sum invariants of 4-manifolds

被引:79
作者
Crane, L [1 ]
Kauffman, LH [1 ]
Yetter, DN [1 ]
机构
[1] UNIV ILLINOIS,DEPT MATH STAT & COMP SCI,CHICAGO,IL 60607
关键词
D O I
10.1142/S0218216597000145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide, with proofs, a complete description of the authors' construction of state-sum invariants announced in [CY], and its generalization to an arbitrary (artinian) semisimple tortile category. We also discuss the relationship of these invariants to generalizations of Broda's surgery invariants [Br1,Br2] using techniques developed in the case of the semi-simple sub-quotient of Rep(U-q(sl2)) (q a principal 4r(th) root of unity) by Roberts [Ro1]. We briefly discuss the generalizations to invariants of 4-manifolds equipped with 2-dimensional (co)homology classes introduced by Yetter [Y6] and Roberts [Ro2].
引用
收藏
页码:177 / 234
页数:58
相关论文
共 46 条
[1]  
[Anonymous], 1971, COMBINATORIAL MATH I
[2]  
ATIYAH M, 1989, PUBL MATH-PARIS, V68, P175, DOI DOI 10.1007/BF02698547
[3]  
Block, 1968, SPECTROSCOPIC GROUP
[4]  
BRODA B, 1993, SURG INVARIANTS 4 MA
[5]  
CASLER BG, 1965, P AM MATH SOC, V16, P559
[6]  
CHUNG S, 1994, INT J MOD PHYS A, P1305
[7]   2-D PHYSICS AND 3-D TOPOLOGY [J].
CRANE, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 135 (03) :615-640
[8]  
CRANE L, 1993, QUANTUM TOPOLOGY, P131
[9]  
CRANE L, 1994, 4 DIMENSIONAL TOPOLO
[10]  
CRANE L, IN PRESS P 22 C DIFF