State-sum invariants of 4-manifolds

被引:79
作者
Crane, L [1 ]
Kauffman, LH [1 ]
Yetter, DN [1 ]
机构
[1] UNIV ILLINOIS,DEPT MATH STAT & COMP SCI,CHICAGO,IL 60607
关键词
D O I
10.1142/S0218216597000145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide, with proofs, a complete description of the authors' construction of state-sum invariants announced in [CY], and its generalization to an arbitrary (artinian) semisimple tortile category. We also discuss the relationship of these invariants to generalizations of Broda's surgery invariants [Br1,Br2] using techniques developed in the case of the semi-simple sub-quotient of Rep(U-q(sl2)) (q a principal 4r(th) root of unity) by Roberts [Ro1]. We briefly discuss the generalizations to invariants of 4-manifolds equipped with 2-dimensional (co)homology classes introduced by Yetter [Y6] and Roberts [Ro2].
引用
收藏
页码:177 / 234
页数:58
相关论文
共 46 条
[11]  
CRANE L, 1993, QUANTUM TOPOLOGY, P116
[12]  
Crane L, 1993, QUANTUM TOPOLOGY, P120, DOI DOI 10.1142/9789812796387_0005.EPRINT
[13]  
DELIGNE P, 1990, COMMUNICATION 0122
[14]  
Donaldon S.K., 1990, OXFORD MATH MONOGRAP
[15]  
DONALDSON SK, 1983, J DIFFER GEOM, V18, P269
[16]   COHERENCE THEOREMS VIA KNOT-THEORY [J].
FREYD, P ;
YETTER, DN .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 78 (01) :49-76
[17]   BRAIDED COMPACT CLOSED CATEGORIES WITH APPLICATIONS TO LOW DIMENSIONAL TOPOLOGY [J].
FREYD, PJ ;
YETTER, DN .
ADVANCES IN MATHEMATICS, 1989, 77 (02) :156-182
[18]   A COMBINATORIAL FORMULA FOR THE PONTRJAGIN CLASSES [J].
GELFAND, IM ;
MACPHERSON, RD .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 26 (02) :304-309
[19]   EXAMPLES OF TENSOR CATEGORIES [J].
GELFAND, S ;
KAZHDAN, D .
INVENTIONES MATHEMATICAE, 1992, 109 (03) :595-617
[20]   THE GEOMETRY OF TENSOR CALCULUS .1. [J].
JOYAL, A ;
STREET, R .
ADVANCES IN MATHEMATICS, 1991, 88 (01) :55-112