Nonuniversal exponents in interface growth

被引:31
作者
Newman, TJ
Swift, MR
机构
[1] UNIV MANCHESTER, DEPT THEORET PHYS, MANCHESTER M13 9PL, LANCS, ENGLAND
[2] SCUOLA INT SUPER STUDI AVANZATI, I-34013 TRIESTE, ITALY
[3] SEZIONE INFM, I-34013 TRIESTE, ITALY
关键词
D O I
10.1103/PhysRevLett.79.2261
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on an extensive numerical investigation of the Kardar-Parisi-Zhang equation describing nonequilibrium interfaces. Attention is paid to the dependence of the growth exponent beta on the details of the distribution of noise p(xi). All distributions considered are delta correlated in space and time, and have finite cumulants. We find that beta becomes progressively more sensitive to details of the distribution with increasing dimensionality. We discuss the implications of these results for the universality hypothesis.
引用
收藏
页码:2261 / 2264
页数:4
相关论文
共 23 条
[11]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[12]   ANOMALOUS ROUGHENING IN GROWTH-PROCESSES [J].
KERTESZ, J ;
WOLF, DE .
PHYSICAL REVIEW LETTERS, 1989, 62 (22) :2571-2574
[13]   ZERO-TEMPERATURE DIRECTED POLYMERS IN A RANDOM POTENTIAL [J].
KIM, JM ;
MOORE, MA ;
BRAY, AJ .
PHYSICAL REVIEW A, 1991, 44 (04) :2345-2351
[14]   GROWTH IN A RESTRICTED SOLID-ON-SOLID MODEL [J].
KIM, JM ;
KOSTERLITZ, JM .
PHYSICAL REVIEW LETTERS, 1989, 62 (19) :2289-2292
[15]  
KRUG J, 1993, J PHYS I, V3, P2179, DOI 10.1051/jp1:1993240
[16]  
Krug J., 1991, SOLIDS FAR EQUILIBRI, P479
[17]   Upper critical dimension of the Kardar-Parisi-Zhang equation [J].
Lassig, M ;
Kinzelbach, H .
PHYSICAL REVIEW LETTERS, 1997, 78 (05) :903-906
[18]   GLASSY SOLUTIONS OF THE KARDAR-PARISI-ZHANG EQUATION [J].
MOORE, MA ;
BLUM, T ;
DOHERTY, JP ;
MARSILI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (21) :4257-4260
[19]   VECTORIZED AND PARALLEL SIMULATIONS OF THE KARDAR-PARISI-ZHANG EQUATION IN 3+1 DIMENSIONS [J].
MOSER, K ;
WOLF, DE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (12) :4049-4054
[20]   NUMERICAL-SOLUTION OF THE KARDAR-PARISI-ZHANG EQUATION IN ONE, 2 AND 3 DIMENSIONS [J].
MOSER, K ;
KERTESZ, J ;
WOLF, DE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 178 (02) :215-226