A review of estimation of distribution algorithms in bioinformatics

被引:67
作者
Armananzas, Ruben [1 ]
Inza, Inaki [1 ]
Santana, Roberto [1 ]
Saeys, Yvan [2 ,3 ]
Luis Flores, Jose [1 ]
Antonio Lozano, Jose [1 ]
Van de Peer, Yves [2 ,3 ]
Blanco, Rosa [4 ]
Robles, Victor [5 ]
Bielza, Concha [6 ]
Larranaga, Pedro [6 ]
机构
[1] Univ Basque Country, Dept Comp Sci & Artificial Intelligence, San Sebastian, Spain
[2] Univ Ghent, Dept Plant Syst Biol, B-9000 Ghent, Belgium
[3] Univ Ghent, Dept Mol Genet, B-9000 Ghent, Belgium
[4] Univ Publ Navarra, Dept Stat & Operat Res, Pamplona, Spain
[5] Univ Politecn Madrid, Dept Arquitectura & Tecnol Sistemas Informat, Madrid, Spain
[6] Univ Politecn Madrid, Dept Inteligencia Artificial, Madrid, Spain
关键词
D O I
10.1186/1756-0381-1-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain.
引用
收藏
页数:12
相关论文
共 68 条
[51]  
Pelikan M., 2006, STUDIES COMPUTATIONA
[52]  
Pelikan M., 2005, Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms, P13, DOI 10.1007/978-3-540-32373-0_6
[53]   Linkage Problem, Distribution Estimation, and Bayesian Networks [J].
Pelikan, Martin ;
Goldberg, David E. ;
Cantu-Paz, Erick .
EVOLUTIONARY COMPUTATION, 2000, 8 (03) :311-340
[54]  
Peña JM, 2004, INT J UNCERTAIN FUZZ, V12, P63, DOI 10.1142/S0218488504002588
[55]   Feature selection for splice site prediction:: A new method using EDA-based feature ranking -: art. no. 64 [J].
Saeys, Y ;
Degroeve, S ;
Aeyels, D ;
Rouzé, P ;
Van de Peer, Y .
BMC BIOINFORMATICS, 2004, 5 (1)
[56]  
Saeys Y, 2006, STUD FUZZ SOFT COMP, V192, P243
[57]  
Saeys Y., 2004, THESIS GHENT U BELGI
[58]   A review of feature selection techniques in bioinformatics [J].
Saeys, Yvan ;
Inza, Inaki ;
Larranaga, Pedro .
BIOINFORMATICS, 2007, 23 (19) :2507-2517
[59]   Fast feature selection using a simple estimation of distribution algorithm: a case study on splice site prediction [J].
Saeys, Yvan ;
Degroeve, Sven ;
Aeyels, Dirk ;
Van de Peer, Yves ;
Rouze, Pierre .
BIOINFORMATICS, 2003, 19 :II179-II188
[60]  
Santana R, 2004, LECT NOTES COMPUT SC, V3337, P388