EXCITED RANDOM WALK

被引:76
作者
Benjamini, Itai [1 ]
Wilson, David B. [2 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Microsoft Res, One Microsoft Way, Redmond, WA 98052 USA
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2003年 / 8卷
关键词
Perturbed random walk; transience;
D O I
10.1214/ECP.v8-1072
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A random walk on Z(d) is excited if the first time it visits a vertex there is a bias in one direction, but on subsequent visits to that vertex the walker picks a neighbor uniformly at random. We show that excited random walk on Z(d) is transient iff d > 1.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 16 条
[11]  
LAWLER G, 1999, ESAIM-PROBAB STAT, V3, P1
[12]  
LAWLER GF, 1991, PROBABILITY ITS APPL
[13]  
Pemantle R., PREPRINT
[14]   Perturbed Brownian motions [J].
Perman, M ;
Werner, W .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (03) :357-383
[15]   Scaling limits of loop-erased random walks and uniform spanning trees [J].
Schramm, O .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 118 (1) :221-288
[16]   The true self-repelling motion [J].
Toth, B ;
Werner, W .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (03) :375-452