High-throughput computational design of cathode coatings for Li-ion batteries

被引:163
作者
Aykol, Muratahan [1 ,3 ]
Kim, Soo [1 ]
Hegde, Vinay I. [1 ]
Snydacker, David [1 ]
Lu, Zhi [1 ]
Hao, Shiqiang [1 ]
Kirklin, Scott [1 ]
Morgan, Dane [2 ]
Wolverton, C. [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
[3] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL PERFORMANCE; LICOO2; CATHODES; INTERCALATION CATHODE; LITHIUM TRANSPORT; SPINEL ELECTRODES; COBALT OXIDE; STABILITY; VOLTAGE; TRANSITION; STORAGE;
D O I
10.1038/ncomms13779
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg-3(BO3)(2) and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2.
引用
收藏
页数:12
相关论文
共 78 条
  • [61] Lithium-Ion Cathode/Coating Pairs for Transition Metal Containment
    Snydacker, David H.
    Aykol, Muratahan
    Kirklin, Scott
    Wolverton, C.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) : A2054 - A2064
  • [62] Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies
    Stevanovic, Vladan
    Lany, Stephan
    Zhang, Xiuwen
    Zunger, Alex
    [J]. PHYSICAL REVIEW B, 2012, 85 (11)
  • [63] Li ion battery materials with core-shell nanostructures
    Su, Liwei
    Jing, Yu
    Zhou, Zhen
    [J]. NANOSCALE, 2011, 3 (10) : 3967 - 3983
  • [64] Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures
    Sun, YK
    Hong, KJ
    Prakash, J
    Amine, K
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (04) : 344 - 348
  • [65] Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries
    Thackeray, Michael M.
    Wolverton, Christopher
    Isaacs, Eric D.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (07) : 7854 - 7863
  • [66] Thackeray MM, 1998, ELECTROCHEM SOLID ST, V1, P7, DOI 10.1149/1.1390617
  • [67] Electrochemical performance of Al2O3-coated Fe doped LiCOVO4
    Van Landschoot, N
    Kelder, EM
    Kooyman, PJ
    Kwakernaak, C
    Schoonman, J
    [J]. JOURNAL OF POWER SOURCES, 2004, 138 (1-2) : 262 - 270
  • [68] Ageing mechanisms in lithium-ion batteries
    Vetter, J
    Novák, P
    Wagner, MR
    Veit, C
    Möller, KC
    Besenhard, JO
    Winter, M
    Wohlfahrt-Mehrens, M
    Vogler, C
    Hammouche, A
    [J]. JOURNAL OF POWER SOURCES, 2005, 147 (1-2) : 269 - 281
  • [69] WAGMAN DD, 1982, J PHYS CHEM REF DATA, V11, P1
  • [70] TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries
    Wang, HF
    Jang, YI
    Huang, BY
    Sadoway, DR
    Chiang, YT
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (02) : 473 - 480