Formaldehyde activating enzyme (Fae) and hexulose-6-phosphate synthase (Hps) in Methanosarcina barkeri:: a possible function in ribose-5-phosphate biosynthesis

被引:32
作者
Goenrich, M
Thauer, RK
Yurimoto, H
Kato, N
机构
[1] Max Planck Inst Terr Mikrobiol, D-35043 Marburg, Germany
[2] Kyoto Univ, Grad Sch Agr, Div Appl Life Sci, Sakyo Ku, Kyoto 6068502, Japan
关键词
Methanogenic archaea; Methanosarcina mazei; C-1-metabolism; ribulose monophosphate pathway; methanogenesis from formaldehyde;
D O I
10.1007/s00203-005-0008-1
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Formaldehyde activating enzyme (Fae) was first discovered in methylotrophic bacteria, where it is involved in the oxidation of methanol to CO2 and in formaldehyde detoxification. The 18 kDa protein catalyzes the condensation of formaldehyde with tetrahydromethanopterin (H4MPT) to methylene-H4MPT. We describe here that Fae is also present and functional in the methanogenic archaeon Methanosarcina barkeri. The faeA homologue in the genome of M. barkeri was heterologously expressed in Escherichia coli and the overproduced purified protein shown to actively catalyze the condensation reaction: apparent V-max = 13 U/mg protein (1 U = mu mol/min); apparent Km for H4MPT = 30 mu M; apparent Km for formaldehyde = 0.1 mM. By Western blot analysis the concentration of Fae in cell extracts of M. barkeri was determined to be in the order of 0.1% of the soluble cell proteins. Besides the faeA gene the genome of M. barkeri harbors a second gene, faeB-hpsB, which is shown to code for a 42 kDa protein with both Fae activity (3.6 U/mg) and hexulose-6-phosphate synthase (Hps) activity (4.4 U/mg). The results support the recent proposal that in methanogenic archaea Fae and Hps could have a function in ribose phosphate synthesis.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 52 条
[41]   MJ0109 is an enzyme that is both an inositol monophosphatase and the 'missing' archaeal fructose1,6-bisphosphatase [J].
Stec, B ;
Yang, HY ;
Johnson, KA ;
Chen, LJ ;
Roberts, MF .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (11) :1046-1050
[42]  
Taylor EJ, 2004, ANTON LEEUW INT J G, V86, P167
[43]   Biochemistry of methanogenesis: a tribute to Marjory Stephenson [J].
Thauer, RK .
MICROBIOLOGY-UK, 1998, 144 :2377-2406
[44]  
THAUER RK, 1995, BIOTECHNOLOGY HDB, P33
[45]   The unique features of glycolytic pathways in Archaea [J].
Verhees, CH ;
Kengen, SWM ;
Tuininga, JE ;
Schut, GJ ;
Adams, MWW ;
De Vos, WM ;
Van der Oost, J .
BIOCHEMICAL JOURNAL, 2003, 375 (02) :231-246
[46]   Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus [J].
Vorholt, JA ;
Hafenbradl, D ;
Stetter, KO ;
Thauer, RK .
ARCHIVES OF MICROBIOLOGY, 1997, 167 (01) :19-23
[47]   Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria [J].
Vorholt, JA .
ARCHIVES OF MICROBIOLOGY, 2002, 178 (04) :239-249
[48]   Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases [J].
Vorholt, JA ;
Chistoserdova, L ;
Stolyar, SM ;
Thauer, RK ;
Lidstrom, ME .
JOURNAL OF BACTERIOLOGY, 1999, 181 (18) :5750-5757
[49]   Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol [J].
Vorholt, JA ;
Marx, CJ ;
Lidstrom, ME ;
Thauer, RK .
JOURNAL OF BACTERIOLOGY, 2000, 182 (23) :6645-6650
[50]   Genomic insights into methanotrophy:: The complete genome sequence of Methylococcus capsulatus (Bath) [J].
Ward, N ;
Larsen, O ;
Sakwa, J ;
Bruseth, L ;
Khouri, H ;
Durkin, AS ;
Dimitrov, G ;
Jiang, LX ;
Scanlan, D ;
Kang, KH ;
Lewis, M ;
Nelson, KE ;
Methé, B ;
Wu, M ;
Heidelberg, JF ;
Paulsen, IT ;
Fouts, D ;
Ravel, J ;
Tettelin, H ;
Ren, QH ;
Read, T ;
DeBoy, RT ;
Seshadri, R ;
Salzberg, SL ;
Jensen, HB ;
Birkeland, NK ;
Nelson, WC ;
Dodson, RJ ;
Grindhaug, SH ;
Holt, I ;
Eidhammer, I ;
Jonasen, I ;
Vanaken, S ;
Utterback, T ;
Feldblyum, TV ;
Fraser, CM ;
Lillehaug, JR ;
Eisen, JA .
PLOS BIOLOGY, 2004, 2 (10) :1616-1628