A characterization of compact-friendly multiplication operators

被引:7
作者
Abramovich, YA
Aliprantis, CD
Burkinshaw, O
Wickstead, AW
机构
[1] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[2] Purdue Univ, Dept Econ & Math, W Lafayette, IN 47907 USA
[3] Queens Univ Belfast, Dept Pure Math, Belfast BT7 1NN, Antrim, North Ireland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1999年 / 10卷 / 02期
关键词
D O I
10.1016/S0019-3577(99)80013-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Answering in the affirmative a question posed in [3], we prove that a positive multiplication operator on any L-p-space (resp. on a C(Omega)-space) is compact-friendly if and only if the multiplier is constant on a set of positive measure (resp. on a non-empty open set). In the process of establishing this result, we also prove that any multiplication operator has a family of hyperinvariant bands - a fact that does not seem to have appeared in the literature before. This provides useful information about the commutant of a multiplication operator.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 5 条
[1]   INVARIANT SUBSPACE THEOREMS FOR POSITIVE OPERATORS [J].
ABRAMOVICH, YA ;
ALIPRANTIS, CD ;
BURKINSHAW, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 124 (01) :95-111
[2]   Multiplication and compact-friendly operators [J].
Abramovich, YA ;
Aliprantis, CD ;
Burkinshaw, O .
POSITIVITY, 1997, 1 (02) :171-180
[3]  
ABRAMOVICH YA, IN PRESS REND I MAT
[4]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[5]  
Lomonosov VI., 1973, Funkcional. Anal. i Prilozen, V7, P55, DOI 10.1007/BF01080698