Spectral Estimates for Resolvent Differences of Self-Adjoint Elliptic Operators

被引:18
作者
Behrndt, Jussi [1 ]
Langer, Matthias [2 ]
Lotoreichik, Vladimir [1 ]
机构
[1] Graz Univ Technol, Inst Numer Math, A-8010 Graz, Austria
[2] Univ Strathclyde, Dept Math & Stat, Glasgow G1 1XH, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Elliptic operator; self-adjoint extension; operator ideal; delta-potential; quasi boundary triple; Weyl function; BOUNDARY-VALUE-PROBLEMS; STRONG DELTA-INTERACTION; GENERALIZED RESOLVENTS; SCHRODINGER-OPERATORS; EXTENSIONS; ASYMPTOTICS; FORMULAS;
D O I
10.1007/s00020-013-2072-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of quasi boundary triples and Weyl functions from extension theory of symmetric operators in Hilbert spaces is developed further and spectral estimates for resolvent differences of two self-adjoint extensions in terms of general operator ideals are proved. The abstract results are applied to self-adjoint realizations of second order elliptic differential operators on bounded and exterior domains, and partial differential operators with delta-potentials supported on hypersurfaces are studied.
引用
收藏
页码:1 / 37
页数:37
相关论文
共 64 条
[1]  
Abels H., 2013, ARXIV10083281
[2]  
Adams R., 2003, SOBOLEV SPACES
[3]  
Agranovich M.S., 1990, ENCYCL MATH SCI, V63, P1
[4]   M operators:: a generalisation of Weyl-Titchmarsh theory [J].
Amrein, WO ;
Pearson, DB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 171 (1-2) :1-26
[5]  
[Anonymous], 1987, CAMBRIDGE STUDIES AD
[6]  
[Anonymous], 1987, OXFORD MATH MONOGRAP
[7]   EXACTLY SOLVABLE MODELS OF SPHERE INTERACTIONS IN QUANTUM-MECHANICS [J].
ANTOINE, JP ;
GESZTESY, F ;
SHABANI, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12) :3687-3712
[8]   The Dirichlet-to-Neumann operator on rough domains [J].
Arendt, W. ;
ter Elst, A. F. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (08) :2100-2124
[9]   Spectral theory for perturbed Krein Laplacians in nonsmooth domains [J].
Ashbaugh, Mark S. ;
Gesztesy, Fritz ;
Mitrea, Marius ;
Teschl, Gerald .
ADVANCES IN MATHEMATICS, 2010, 223 (04) :1372-1467
[10]   NON-LOCAL BOUNDARY VALUE PROBLEMS FOR ELLIPTIC OPERATORS [J].
BEALS, R .
AMERICAN JOURNAL OF MATHEMATICS, 1965, 87 (02) :315-&