The Dirichlet-to-Neumann operator on rough domains

被引:52
作者
Arendt, W. [2 ]
ter Elst, A. F. M. [1 ]
机构
[1] Univ Auckland, Dept Math, Auckland 1142, New Zealand
[2] Univ Ulm, Inst Appl Anal, D-89081 Ulm, Germany
关键词
Dirichlet-to-Neumann operator; Trace; Form methods; Rough boundary; Irreducible semigroup; ROBIN BOUNDARY-CONDITIONS; ARBITRARY DOMAINS; LAPLACIAN;
D O I
10.1016/j.jde.2011.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a bounded connected open set Omega subset of R-d whose boundary Gamma has a finite (d - 1)-dimensional Hausdorff measure. Then we define the Dirichlet-to-Neumann operator D-0 on L-2(Gamma) by form methods. The operator -D-0 is self-adjoint and generates a contractive C-0-semigroup S = (S-t)(t > 0) on L-2(Gamma). We show that the asymptotic behaviour of S-t as t -> infinity is related to properties of the trace of functions in H-1(Omega) which Omega may or may not have. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2100 / 2124
页数:25
相关论文
共 21 条
[1]  
[Anonymous], 1996, Applied Mathematical Sciences
[2]  
[Anonymous], 2000, Oxford Mathematical Monographs
[3]  
[Anonymous], 1992, Measure theory and fine properties of functions
[4]  
[Anonymous], 1991, DEGRUYTER STUD MATH
[5]  
[Anonymous], 1985, LINEARE FUNKTIONALAN
[6]  
[Anonymous], 1994, DIRICHLET FORMS SYMM
[7]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[8]   The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions [J].
Arendt, W ;
Metafune, G ;
Pallara, D ;
Romanelli, S .
SEMIGROUP FORUM, 2003, 67 (02) :247-261
[9]   The Laplacian with Robin boundary conditions on arbitrary domains [J].
Arendt, W ;
Warma, M .
POTENTIAL ANALYSIS, 2003, 19 (04) :341-363
[10]  
ARENDT W, 2011, J OPERATOR IN PRESS