The Dirichlet-to-Neumann operator on rough domains

被引:52
作者
Arendt, W. [2 ]
ter Elst, A. F. M. [1 ]
机构
[1] Univ Auckland, Dept Math, Auckland 1142, New Zealand
[2] Univ Ulm, Inst Appl Anal, D-89081 Ulm, Germany
关键词
Dirichlet-to-Neumann operator; Trace; Form methods; Rough boundary; Irreducible semigroup; ROBIN BOUNDARY-CONDITIONS; ARBITRARY DOMAINS; LAPLACIAN;
D O I
10.1016/j.jde.2011.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a bounded connected open set Omega subset of R-d whose boundary Gamma has a finite (d - 1)-dimensional Hausdorff measure. Then we define the Dirichlet-to-Neumann operator D-0 on L-2(Gamma) by form methods. The operator -D-0 is self-adjoint and generates a contractive C-0-semigroup S = (S-t)(t > 0) on L-2(Gamma). We show that the asymptotic behaviour of S-t as t -> infinity is related to properties of the trace of functions in H-1(Omega) which Omega may or may not have. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2100 / 2124
页数:25
相关论文
共 21 条
[11]  
Arendt W., 1986, Lecture Notes in Math., V1184
[12]  
Arendt W., 2007, Ulmer Seminare, V12, P23
[13]   A Variational Approach to the Isoperimetric Inequality for the Robin Eigenvalue Problem [J].
Bucur, Dorin ;
Giacomini, Alessandro .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (03) :927-961
[14]   Robin boundary value problems on arbitrary domains [J].
Daners, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :4207-4236
[15]  
EDMUNDS D. E., 1987, OXFORD MATH MONOGR
[16]  
Engel KJ, 2003, ARCH MATH, V81, P548, DOI 10.1007/s00013-003-0557-y
[17]  
Escher J., 1994, ANN SCUOLA NORM SUP, V21, P235
[18]  
Fremlin D. H., 2003, MEASURE THEORY, VTwo
[19]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF, V2nd
[20]  
Mazja V., 1985, SPRINGER SER SOV MAT