The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions

被引:56
作者
Arendt, W [1 ]
Metafune, G
Pallara, D
Romanelli, S
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
[2] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[3] Univ Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
关键词
Wentzell-Robin boundary conditions; positive contraction semigroups;
D O I
10.1007/s00233-002-0010-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Laplacian Delta on a smooth bounded open set Omega subset of R-n with Wentzell-Robin boundary condition betau + partial derivativeu/partial derivativev + Deltau = 0 on the boundary Gamma. Under the assumption beta is an element of C(Gamma) with beta greater than or equal to 0, we prove that Delta generates a differentiable positive contraction semigroup on C(Omega) and study some monotonicity properties and the asymptotic behaviour.
引用
收藏
页码:247 / 261
页数:15
相关论文
共 26 条
[1]  
AMANN H, 1996, ANN MAT PUR APPL, V171, P44
[2]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[3]  
Arendt W., 1997, J. Operator Th., V38, P87
[4]  
Arendt W., 2001, VECTOR VALUED LAPLAC, DOI DOI 10.1007/978-3-0348-5075-9
[5]  
Cl?ment Ph., 1986, INDAG MATH, V48, P379
[6]   Robin boundary value problems on arbitrary domains [J].
Daners, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :4207-4236
[7]  
ENGEL KJ, 2000, ONE PARAMETER SEMIGR
[8]  
ENGEL KJ, IN PRESS ARCH MATH
[9]   C0-semigroups generated by second order differential operators with general Wentzell boundary conditions [J].
Favini, A ;
Goldstein, ER ;
Goldstein, JA ;
Romanelli, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :1981-1989
[10]   The heat equation with generalized Wentzell boundary condition [J].
Favini, A ;
Goldstein, GR ;
Goldstein, JA ;
Romanelli, S .
JOURNAL OF EVOLUTION EQUATIONS, 2002, 2 (01) :1-19