The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions

被引:56
作者
Arendt, W [1 ]
Metafune, G
Pallara, D
Romanelli, S
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
[2] Univ Lecce, Dipartimento Matemat E De Giorgi, I-73100 Lecce, Italy
[3] Univ Bari, Dipartimento Interuniv Matemat, I-70125 Bari, Italy
关键词
Wentzell-Robin boundary conditions; positive contraction semigroups;
D O I
10.1007/s00233-002-0010-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Laplacian Delta on a smooth bounded open set Omega subset of R-n with Wentzell-Robin boundary condition betau + partial derivativeu/partial derivativev + Deltau = 0 on the boundary Gamma. Under the assumption beta is an element of C(Gamma) with beta greater than or equal to 0, we prove that Delta generates a differentiable positive contraction semigroup on C(Omega) and study some monotonicity properties and the asymptotic behaviour.
引用
收藏
页码:247 / 261
页数:15
相关论文
共 26 条
[21]  
NAGEL R, 1986, SPRINGER LECT NOTES, V1184
[22]  
Necas J., 1967, Les methodes directes en theorie des equations elliptiques
[23]   Invariance of closed convex sets and domination criteria for semigroups [J].
Ouhabaz, EM .
POTENTIAL ANALYSIS, 1996, 5 (06) :611-625
[24]  
Taira K, 2000, SEMIGROUP FORUM, V60, P296
[25]   ANALYTIC SEMIGROUPS, DEGENERATE ELLIPTIC-OPERATORS AND APPLICATIONS TO NONLINEAR CAUCHY-PROBLEMS [J].
VESPRI, V .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1989, 155 :353-388
[26]  
WARMA M, 2002, SEMIGROUP FORUM, V65, P1