Assessment of Self-Organizing Map artificial neural networks for the classification of sediment quality

被引:95
作者
Alvarez-Guerra, Manuel [1 ]
Gonzalez-Pinuela, Cristina [1 ]
Andres, Ana [1 ]
Galan, Berta [1 ]
Viguri, Javier R. [1 ]
机构
[1] Univ Cantabria, Dept Chem Engn & Inorgan Chem, ETSIIT, E-39005 Santander, Spain
关键词
sediment; quality assessment; Self-Organizing Map; multivariate statistical techniques;
D O I
10.1016/j.envint.2008.01.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The application of mathematical tools in initial steps of sediment quality assessment frameworks can be useful to provide an integrated interpretation of multiple measured variables. This study reveals that the Self-Organizing Map (SOM) artificial neural network can be an effective tool for the integration of multiple physical, chemical and ecotoxicological variables in order to classify different sites under study according to their similar sediment quality. Sediment samples from 40 sites of 3 estuaries of Cantabria (Spain) were classified with respect to 13 physical, chemical and toxicological variables using the SOM. Results obtained with the SOM, when compared to those of traditional multivariate statistical techniques commonly used in the field of sediment quality (principal component analysis (PCA) and hierarchical cluster analysis (HCA)), provided a more useful classification for further assessment steps. Especially, the powerful visualization tools of the SOM, which offer more information and in an easier way than HCA and PCA, facilitate the task of establishing an order of priority between the distinguished groups of sites depending on their need for further investigations or remediation actions in subsequent management steps. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:782 / 790
页数:9
相关论文
共 48 条
[1]  
Afifi A., 2003, COMPUTER AIDED MULTI
[2]  
[Anonymous], 1999, MATL DSP C ESP FINL
[3]  
[Anonymous], 2005, SPSS BAS 14 0 US GUI
[4]   Assessing and Managing Contaminated Sediments: Part I, Developing an Effective Investigation and Risk Evaluation Strategy [J].
Apitz, Sabine E. ;
Davis, John W. ;
Finkelstein, Ken ;
Hohreiter, David W. ;
Hoke, Robert ;
Jensen, Richard H. ;
Jersak, Joe ;
Kirtay, Victoria J. ;
Mack, E. Erin ;
Magar, Victor S. ;
Moore, David ;
Reible, Danny ;
Stahl, Ralph G., Jr. .
INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, 2005, 1 (01) :2-8
[5]   Geochemical tracers of northern Portuguese estuarine sediments on the shelf [J].
Araújo, MF ;
Jouanneau, JM ;
Valério, P ;
Barbosa, T ;
Gouveia, A ;
Weber, O ;
Oliveira, A ;
Rodrigues, A ;
Dias, JMA .
PROGRESS IN OCEANOGRAPHY, 2002, 52 (2-4) :277-297
[6]   Comparative sediment quality assessment in different littoral ecosystems from Spain (Gulf of Cadiz) and Brazil (Santos and Sao Vicente estuarine system) [J].
Cesar, A. ;
Choueri, R. B. ;
Riba, I. ;
Morales-Caselles, C. ;
Pereira, C. D. S. ;
Santos, A. R. ;
Abessa, D. M. S. ;
DelValls, T. A. .
ENVIRONMENT INTERNATIONAL, 2007, 33 (04) :429-435
[7]   Determining when contamination is pollution - Weight of evidence determinations for sediments and effluents [J].
Chapman, Peter M. .
ENVIRONMENT INTERNATIONAL, 2007, 33 (04) :492-501
[8]   A Decision-Making Framework for Sediment Contamination [J].
Chapman, Peter M. ;
Anderson, Janette .
INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT, 2005, 1 (03) :163-173
[9]   Should the sediment quality triad become a tetrad, a pentad, or possibly even a hexad? [J].
Chapman, PM ;
Hollert, H .
JOURNAL OF SOILS AND SEDIMENTS, 2006, 6 (01) :4-8
[10]   Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance [J].
Chatterjee, M. ;
Silva Filho, E. V. ;
Sarkar, S. K. ;
Sella, S. M. ;
Bhattacharya, A. ;
Satpathy, K. K. ;
Prasad, M. V. R. ;
Chakraborty, S. ;
Bhattacharya, B. D. .
ENVIRONMENT INTERNATIONAL, 2007, 33 (03) :346-356