Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR

被引:317
作者
Colavitti, R
Pani, G
Bedogni, B
Anzevino, R
Borrello, S
Waltenberger, J
Galeotti, T
机构
[1] Catholic Univ, Sch Med, Inst Gen Pathol, I-00168 Rome, Italy
[2] Univ Ulm, Med Ctr, Dept Internal Med Cardiol 2, D-89081 Ulm, Germany
关键词
D O I
10.1074/jbc.M107711200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent evidence shows the involvement of reactive oxygen species (ROS) in the mitogenic cascade initiated by the tyrosine kinase receptors of several growth factor peptides. We have asked whether also the vascular endothelial growth factor (VEGF) utilizes ROS as messenger intermediates downstream of the VEGF receptor-2 (VEGFR-2)/KDR receptor given that the proliferation of endothelial cells during neoangiogenesis is physiologically regulated by oxygen and likely by its derivative species. In porcine aortic endothelial cells stably expressing human KDR, receptor activation by VEGF is followed by a rapid increase in the intracellular generation of hydrogen peroxide as revealed by the peroxide-sensitive probe dichlorofluorescein diacetate. Genetic and pharmacological studies suggest that such oxidant burst requires as upstream events the activation of phosphatidylinositol 3-kinase and the small GTPase Rac-1 and is likely initiated by lipoxygenases. Interestingly, ROS generation in response to VEGF is not blocked but rather potentiated by endothelial nitric-oxide synthase inhibitors diphenyleneiodonium and N(G)methyl-L-arginine, ruling out the possibility of nitric oxide being the oxidant species here detected in VEGF-stimulated cells. Inhibition of KDR-dependent generation of ROS attenuates early signaling events including receptor autophosphorylation and binding to a phospholipase C-gamma-glutathione S-transferase fusion protein. Moreover, catalase, the lipoxygenase inhibitor nordihydroguaiaretic acid, the synthetic ROS scavenger EUK-134, and phosphatidylinositol 3-kinase inhibitor wortmannin all reduce ERK phosphorylation in response to VEGF, and antioxidants prevent VEGF-dependent mitogenesis. Finally, cell culture and stimulation in a nearly anoxic environment mimic the effect of ROS scavenger on receptor and ERK phosphorylation, reinforcing the idea that ROS are necessary components of the mitogenic signaling cascade initiated by KDR. These data identify ROS as a new class of intracellular angiogenic mediators and may represent a potential premise for new antioxidant-based antiangiogenic therapies.
引用
收藏
页码:3101 / 3108
页数:8
相关论文
共 37 条
  • [1] CELL INACTIVATION AND CELL-CYCLE INHIBITION AS INDUCED BY EXTREME HYPOXIA - THE POSSIBLE ROLE OF CELL-CYCLE ARREST AS A PROTECTION AGAINST HYPOXIA-INDUCED LETHAL DAMAGE
    AMELLEM, O
    PETTERSEN, EO
    [J]. CELL PROLIFERATION, 1991, 24 (02) : 127 - 141
  • [2] Platelet-derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase
    Bae, YS
    Sung, JY
    Kim, OS
    Kim, YJ
    Hur, KC
    Kazlauskas, A
    Rhee, SG
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (14) : 10527 - 10531
  • [3] Epidermal growth factor (EGF)-induced generation of hydrogen peroxide - Role in EGF receptor-mediated tyrosine phosphorylation
    Bae, YS
    Kang, SW
    Seo, MS
    Baines, IC
    Tekle, E
    Chock, PB
    Rhee, SG
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (01) : 217 - 221
  • [4] Cai T, 1999, LAB INVEST, V79, P1151
  • [5] Angiogenesis inhibited by drinking tea
    Cao, YH
    Cao, RH
    [J]. NATURE, 1999, 398 (6726) : 381 - 381
  • [6] Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
    Chandel, NS
    Maltepe, E
    Goldwasser, E
    Mathieu, CE
    Simon, MC
    Schumacker, PT
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (20) : 11715 - 11720
  • [7] Oxygen radicals and signaling
    Finkel, T
    [J]. CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (02) : 248 - 253
  • [8] PROGRAMMED CELL-DEATH AND BCL-2 PROTECTION IN VERY-LOW OXYGEN
    JACOBSON, MD
    RAFF, MC
    [J]. NATURE, 1995, 374 (6525) : 814 - 816
  • [9] Tumor angiogenesis: past, present and the near future
    Kerbel, RS
    [J]. CARCINOGENESIS, 2000, 21 (03) : 505 - 515
  • [10] INHIBITION OF VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED ANGIOGENESIS SUPPRESSES TUMOR-GROWTH INVIVO
    KIM, KJ
    LI, B
    WINER, J
    ARMANINI, M
    GILLETT, N
    PHILLIPS, HS
    FERRARA, N
    [J]. NATURE, 1993, 362 (6423) : 841 - 844