On the existence of the exponential solution of linear differential systems

被引:28
作者
Moan, PC
Oteo, JA
Ros, J
机构
[1] Dept Appl Math & Theoret Phys, Cambridge CB3 9EW, England
[2] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Spain
[3] IFIC, Burjassot 46100, Valencia, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 27期
关键词
D O I
10.1088/0305-4470/32/27/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The existence of an exponential representation for the fundamental solutions of a linear differential system is approached from a novel point of view. A sufficient condition is obtained in terms of the norm of the coefficient operator defining the system. The condition turns out to coincide with a previously published one concerning convergence of the Magnus series expansion. Direct analysis of the general evolution equations in the SU(N) Lie group illustrates how the estimate for the domain of existence/convergence becomes larger. Eventually, an application is done for the Baker-Campbell-Hausdorff series.
引用
收藏
页码:5133 / 5139
页数:7
相关论文
共 9 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]   Magnus and Fer expansions for matrix differential equations: The convergence problem [J].
Blanes, S ;
Casas, F ;
Oteo, JA ;
Ros, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (01) :259-268
[3]  
DIXMIER J, 1957, B SOC MATH FRANCE, V85, P113
[4]   On the solution of linear differential equations in Lie groups [J].
Iserles, A ;
Norsett, SP .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1754) :983-1019
[5]   RECURSIVE GENERATION OF HIGHER-ORDER TERMS IN THE MAGNUS EXPANSION [J].
KLARSFELD, S ;
OTEO, JA .
PHYSICAL REVIEW A, 1989, 39 (07) :3270-3273
[7]   ON EXPONENTIAL FORM OF TIME-DISPLACEMENT OPERATORS IN QUANTUM MECHANICS [J].
PECHUKAS, P ;
LIGHT, JC .
JOURNAL OF CHEMICAL PHYSICS, 1966, 44 (10) :3897-&
[8]  
SAITO M, 1957, SCI PAP COLL GEN ED, V7, P1
[9]   EXPONENTIAL OPERATORS AND PARAMETER DIFFERENTIATION IN QUANTUM PHYSICS [J].
WILCOX, RM .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (04) :962-&