Free-standing graphene at atomic resolution

被引:528
作者
Gass, Mhairi H. [1 ]
Bangert, Ursel [2 ]
Bleloch, Andrew L. [1 ]
Wang, Peng [1 ]
Nair, Rahul R. [2 ,3 ]
Geim, A. K. [3 ]
机构
[1] STFC Daresbury Lab, SuperSTEM, Warrington WA4 4AD, Cheshire, England
[2] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1038/nnano.2008.280
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Research interest in graphene, a two-dimensional crystal consisting of a single atomic plane of carbon atoms, has been driven by its extraordinary properties, including charge carriers that mimic ultra-relativistic elementary particles. Moreover, graphene exhibits ballistic electron transport on the submicrometre scale, even at room temperature, which has allowed the demonstration of graphene-based field-effect transistors and the observation of a room-temperature quantum Hall effect. Here we confirm the presence of free-standing, single-layer graphene with directly interpretable atomic-resolution imaging combined with the spatially resolved study of both the pi -> pi* transition and the pi + sigma plasmon. We also present atomic-scale observations of the morphology of free-standing graphene and explore the role of microstructural peculiarities that affect the stability of the sheets. We also follow the evolution and interaction of point defects and suggest a mechanism by which they form ring defects.
引用
收藏
页码:676 / 681
页数:6
相关论文
共 23 条
[1]   Structural defects created on natural graphite surface by slight treatment of oxygen plasma - STM observations [J].
Bourelle, E ;
Konno, H ;
Inagaki, M .
CARBON, 1999, 37 (12) :2041-2048
[2]   Plasmon spectroscopy of free-standing graphene films [J].
Eberlein, T. ;
Bangert, U. ;
Nair, R. R. ;
Jones, R. ;
Gass, M. ;
Bleloch, A. L. ;
Novoselov, K. S. ;
Geim, A. ;
Briddon, P. R. .
PHYSICAL REVIEW B, 2008, 77 (23)
[3]  
EGERTON RF, 1996, ELECT ENERGY LOSS SP, V304
[4]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[5]   Measuring the energy of the graphite π+σ plasmon peak [J].
Filippi, M ;
Calliari, L .
SURFACE AND INTERFACE ANALYSIS, 2006, 38 (04) :595-598
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Vacancy and interstitial defects at graphite surfaces: Scanning tunneling microscopic study of the structure, electronic property, and yield for ion-induced defect creation [J].
Hahn, JR ;
Kang, H .
PHYSICAL REVIEW B, 1999, 60 (08) :6007-6017
[8]   Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy [J].
Kociak, M ;
Henrard, L ;
Stéphan, O ;
Suenaga, K ;
Colliex, C .
PHYSICAL REVIEW B, 2000, 61 (20) :13936-13944
[9]   Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes -: art. no. 245405 [J].
Krasheninnikov, AV ;
Nordlund, K ;
Sirviö, M ;
Salonen, E ;
Keinonen, J .
PHYSICAL REVIEW B, 2001, 63 (24)
[10]   Three-dimensional atomic-scale structure of size-selected gold nanoclusters [J].
Li, Z. Y. ;
Young, N. P. ;
Di Vece, M. ;
Palomba, S. ;
Palmer, R. E. ;
Bleloch, A. L. ;
Curley, B. C. ;
Johnston, R. L. ;
Jiang, J. ;
Yuan, J. .
NATURE, 2008, 451 (7174) :46-U2