Synthesis and Optical Properties of Small Au Nanorods Using a Seedless Growth Technique

被引:224
作者
Ali, Moustafa R. K. [1 ]
Snyder, Brian [1 ]
El-Sayed, Mostafa A. [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Laser Dynam Lab, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
WET CHEMICAL SYNTHESIS; GOLD NANOPARTICLES; PHOTOTHERMAL THERAPY; CATIONIC SURFACTANT; CARBON NANOTUBES; UV-IRRADIATION; ASCORBIC-ACID; ASPECT-RATIO; CANCER; ABSORPTION;
D O I
10.1021/la301387p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gold nanoparticles have shown potential in photothermal cancer therapy and optoelectronic technology. In both applications, a call for small size nanorods is warranted. In the present work, a one-pot seedless synthetic technique has been developed to prepare relatively small monodisperse gold nanorods with average dimensions (length x width) of 18 x 4.5 nm, 25 x 5 nm, 15 x 4.5 nm, and 10 x 2.5 nm. In this method, the pH was found to play a crucial role in the monodispersity of the nanorods when the NaBH4 concentration of the growth solution was adjusted to control the reduction rate of the gold ions. At the optimized pH and NaBH4 concentrations, smaller gold nanorods were produced by adjusting the CTAB concentration in the growth solution. In addition, the concentration of silver ions in the growth solution was found to be pivotal in controlling the aspect ratio of the nanorods. The extinction coefficient values for the small gold nanorods synthesized with three different aspect ratios were estimated using the absorption spectra, size distributions, and the atomic spectroscopic analysis data. The previously accepted relationships between the extinction coefficient or the longitudinal band wavelength values and the nanorods' aspect ratios found for the large nanorods do not extend to the small size domain reported in the present work. The failure of extending these relationships over larger sizes is a result of the interaction of light with the large rods giving an extinction band which results mostly from scattering processes while the extinction of the small nanorods results from absorption processes.
引用
收藏
页码:9807 / 9815
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 1985, HDB CHEM EQUILIBRIA
[2]   Gas chromatography with inductively coupled plasma mass spectrometric detection in speciation analysis [J].
Bouyssiere, B ;
Szpunar, J ;
Lobinski, R .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2002, 57 (05) :805-828
[3]   Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells [J].
Chen, Jingyi ;
Wang, Danling ;
Xi, Jiefeng ;
Au, Leslie ;
Siekkinen, Andy ;
Warsen, Addie ;
Li, Zhi-Yuan ;
Zhang, Hui ;
Xia, Younan ;
Li, Xingde .
NANO LETTERS, 2007, 7 (05) :1318-1322
[4]   Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J].
Connor, EE ;
Mwamuka, J ;
Gole, A ;
Murphy, CJ ;
Wyatt, MD .
SMALL, 2005, 1 (03) :325-327
[5]   Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice [J].
Dickerson, Erin B. ;
Dreaden, Erik C. ;
Huang, Xiaohua ;
El-Sayed, Ivan H. ;
Chu, Hunghao ;
Pushpanketh, Sujatha ;
McDonald, John F. ;
El-Sayed, Mostafa A. .
CANCER LETTERS, 2008, 269 (01) :57-66
[6]   Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods [J].
Durr, Nicholas J. ;
Larson, Timothy ;
Smith, Danielle K. ;
Korgel, Brian A. ;
Sokolov, Konstantin ;
Ben-Yakar, Adela .
NANO LETTERS, 2007, 7 (04) :941-945
[7]   Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer [J].
El-Sayed, IH ;
Huang, XH ;
El-Sayed, MA .
NANO LETTERS, 2005, 5 (05) :829-834
[8]   Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles [J].
El-Sayed, Ivan H. ;
Huang, Xiaohua ;
El-Sayed, Mostafa A. .
CANCER LETTERS, 2006, 239 (01) :129-135
[9]   Some interesting properties of metals confined in time and nanometer space of different shapes [J].
El-Sayed, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 2001, 34 (04) :257-264
[10]   PREPARATION OF RODLIKE GOLD PARTICLES BY UV IRRADIATION USING CATIONIC MICELLES AS A TEMPLATE [J].
ESUMI, K ;
MATSUHISA, K ;
TORIGOE, K .
LANGMUIR, 1995, 11 (09) :3285-3287