The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol

被引:107
作者
Deeks, ED [1 ]
Cook, JP [1 ]
Day, PJ [1 ]
Smith, DC [1 ]
Roberts, LM [1 ]
Lord, JM [1 ]
机构
[1] Univ Warwick, Dept Sci Biol, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1021/bi011580v
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Several protein toxins, including the A chain of ricin (RTA), enter mammalian cells by endocytosis and subsequently reach their cytosolic substrates by translocation across the endoplasmic reticulum (ER) membrane. To achieve this export, such toxins exploit the ER-associated protein degradation (ERAD) pathway but must escape, at least in part, the normal degradative fate of ERAD substrates. Toxins that translocate from the ER have an unusually low lysine content. Since lysyl residues are potential ubiquitination sites, it has been proposed that this paucity of lysines reduces the chance of ubiquitination and subsequent ubiquitin-mediated proteasomal degradation [Hazes, B., and Read, R. J. (1997) Biochemistry 36, 11051-11054]. Here we provide experimental support for this hypothesis. The two lysyl residues within RTA were changed to arginyl residues. Their replacement in RTA did not have a significant stabilizing effect, suggesting that the endogenous lysyl residues are not the usual sites for ubiquitin attachment. However, when four additional lysines were introduced into RTA in a way that did not compromise the activity, structure, or stability of the toxin, degradation was significantly enhanced. Enhanced degradation resulted from ubiquitination that predisposed the toxin to proteasomal degradation. Treatment with the proteasome inhibitor clasto-lactacystin P-lactone increased the cytotoxicity of the lysine-rich RTA to a level approaching that of wild-type ricin. The introduction of four additional lysyl residues into a second ribosome-inactivating protein, abrin A chain, also dramatically decreased the cytotoxicity of the holotoxin compared to wild-type abrin. This effect could also be reversed by proteasomal inhibition. Our data support the hypothesis that the evolution of a low lysine content is a degradation-avoidance strategy for toxins that retrotranslocate from the ER.
引用
收藏
页码:3405 / 3413
页数:9
相关论文
共 52 条
[1]   Ubiquitin and the control of protein fate in the secretory and endocytic pathways [J].
Bonifacino, JS ;
Weissman, AM .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :19-57
[2]   A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein [J].
Breitschopf, K ;
Bengal, E ;
Ziv, T ;
Admon, A ;
Ciechanover, A .
EMBO JOURNAL, 1998, 17 (20) :5964-5973
[3]   ER-associated and proteasome-mediated protein degradation: How two topologically restricted events came together [J].
Brodsky, JL ;
McCracken, AA .
TRENDS IN CELL BIOLOGY, 1997, 7 (04) :151-156
[4]   Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity [J].
Chillarón, J ;
Haas, IG .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (01) :217-226
[5]   THE UBIQUITIN-PROTEASOME PROTEOLYTIC PATHWAY [J].
CIECHANOVER, A .
CELL, 1994, 79 (01) :13-21
[6]   Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome [J].
de Virgilio, M ;
Weninger, H ;
Ivessa, NE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (16) :9734-9743
[7]   DEGRADATION OF ORNITHINE DECARBOXYLASE BY THE MAMMALIAN AND YEAST 26S PROTEASOME COMPLEXES REQUIRES ALL THE COMPONENTS OF THE PROTEASE [J].
ELIAS, S ;
BERCOVICH, B ;
KAHANA, C ;
COFFINO, P ;
FISCHER, M ;
HILT, W ;
WOLF, DH ;
CIECHANOVER, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 229 (01) :276-283
[8]   Setting the standards: Quality control in the secretory pathway [J].
Ellgaard, L ;
Molinari, M ;
Helenius, A .
SCIENCE, 1999, 286 (5446) :1882-1888
[9]  
ENDO Y, 1987, J BIOL CHEM, V262, P5908
[10]   Penetration of protein toxins into cells [J].
Falnes, PO ;
Sandvig, K .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (04) :407-413