Quantifying Disorder through Conditional Entropy: An Application to Fluid Mixing

被引:34
作者
Brandani, Giovanni B. [1 ]
Schor, Marieke [1 ]
MacPhee, Cait E. [1 ]
Grubmueller, Helmut [2 ]
Zachariae, Ulrich [1 ,3 ,4 ]
Marenduzzo, Davide [1 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland
[2] Max Planck Inst Biophys Chem, Dept Theoret & Computat Biophys, D-37077 Gottingen, Germany
[3] Univ Dundee, Coll Life Sci, Div Computat Biol, Dundee, Scotland
[4] Univ Dundee, Div Phys, Sch Engn Phys & Math, Dundee, Scotland
来源
PLOS ONE | 2013年 / 8卷 / 06期
基金
英国工程与自然科学研究理事会;
关键词
PHASE-DIAGRAMS; MODEL; DOMAIN; ALGORITHMS; MEMBRANES; DYNAMICS;
D O I
10.1371/journal.pone.0065617
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present a method to quantify the extent of disorder in a system by using conditional entropies. Our approach is especially useful when other global, or mean field, measures of disorder fail. The method is equally suited for both continuum and lattice models, and it can be made rigorous for the latter. We apply it to mixing and demixing in multicomponent fluid membranes, and show that it has advantages over previous measures based on Shannon entropies, such as a much diminished dependence on binning and the ability to capture local correlations. Further potential applications are very diverse, and could include the study of local and global order in fluid mixtures, liquid crystals, magnetic materials, and particularly biomolecular systems.
引用
收藏
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 1935, Proc. R. Soc. A, DOI DOI 10.1098/RSPA.1935.0122
[2]  
[Anonymous], 1949, The Mathematical Theory of Communication
[3]  
Atkins P.W., 2006, Physical Chemistry, V8
[4]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[5]   Quantifying fluid mixing with the Shannon entropy [J].
Camesasca, Marco ;
Kaufman, Miron ;
Manas-Zloczower, Ica .
MACROMOLECULAR THEORY AND SIMULATIONS, 2006, 15 (08) :595-607
[6]  
Chaikin P. M., 2000, PRINCIPLES CONDENSED, V1
[7]   Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures [J].
Feigenson, Gerald W. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2009, 1788 (01) :47-52
[8]   Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins [J].
Fittipaldi, A ;
Ferrari, A ;
Zoppé, M ;
Arcangeli, C ;
Pellegrini, V ;
Beltram, F ;
Giacca, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (36) :34141-34149
[9]   Phase diagrams of lipid mixtures relevant to the study of membrane rafts [J].
Goni, Felix M. ;
Alonso, Alicia ;
Bagatolli, Luis A. ;
Brown, Rhoderick E. ;
Marsh, Derek ;
Prieto, Manuel ;
Thewalt, Jenifer L. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2008, 1781 (11-12) :665-684
[10]   Separation of components in lipid membranes induced by shape transformation [J].
Gozdz, W. T. ;
Bobrovska, N. ;
Ciach, A. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (01)