Wada basin boundaries in chaotic scattering

被引:78
作者
Poon, L
Campos, J
Ott, E
Grebogi, C
机构
[1] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,SYST RES INST,COLLEGE PK,MD 20742
[4] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
[5] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLLEGE PK,MD 20742
[6] UNIV INTERAMER PUERTO RICO,BAYAMON,PR 00959
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 02期
关键词
D O I
10.1142/S0218127496000035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaotic scattering systems with multiple exit modes typically have fractal phase space boundaries separating the sets of initial conditions (basins) going to the various exits. If the exits number more than two, we show that the system may possess the stronger property that any initial condition which is on the boundary of one exit basin is also simultaneously on the boundary of all the other exit basins. This interesting property is known as the Wada property and basin boundaries having this property are called Wada basin boundaries.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 42 条
[1]  
Berry M. V., 1981, European Journal of Physics, V2, P91, DOI 10.1088/0143-0807/2/2/006
[2]   On the periodic motions of dynamical systems [J].
Birkhoff, GD .
ACTA MATHEMATICA, 1927, 50 (01) :359-379
[3]   BIFURCATION TO CHAOTIC SCATTERING [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E .
PHYSICA D, 1990, 46 (01) :87-121
[4]   FRACTAL BOUNDARIES FOR EXIT IN HAMILTONIAN-DYNAMICS [J].
BLEHER, S ;
GREBOGI, C ;
OTT, E ;
BROWN, R .
PHYSICAL REVIEW A, 1988, 38 (02) :930-938
[5]   INITIAL-VALUE SPACE STRUCTURE IN IRREGULAR GRAVITATIONAL SCATTERING [J].
BOYD, PT ;
MCMILLAN, SLW .
PHYSICAL REVIEW A, 1992, 46 (10) :6277-6287
[6]   FRACTAL BOUNDARIES IN MAGNETOTAIL PARTICLE DYNAMICS [J].
CHEN, J ;
REXFORD, JL ;
LEE, YC .
GEOPHYSICAL RESEARCH LETTERS, 1990, 17 (08) :1049-1052
[8]   TRANSITION TO CHAOTIC SCATTERING [J].
DING, M ;
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1990, 42 (12) :7025-7040
[9]   IRREGULAR SCATTERING [J].
ECKHARDT, B .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 33 (1-3) :89-98
[10]   FRACTAL PROPERTIES OF SCATTERING SINGULARITIES [J].
ECKHARDT, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (17) :5971-5979