Wavelet base control for chaos motion

被引:13
作者
Wang, ZY [1 ]
Cai, YL
Jia, D
机构
[1] Zhengzhou Univ, Dept Elect Engn, Zhengzhou 450052, Peoples R China
[2] Xi An Jiao Tong Univ, Dept Automat Control, Xian 710049, Peoples R China
关键词
D O I
10.7498/aps.48.206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the property that the wavelet can approximate any nonlinear continuous function in the compact supporting set, a new method is presented to control chaos. By this method the trajectories of some typical chaotic systems, such as Duffing equation, Lorenz model, etc., are controlled to the target orbits or points. It is proved that the wavelet base control algorithm is feasible and control effect is better.
引用
收藏
页码:206 / 212
页数:7
相关论文
共 9 条
[1]   TAMING CHAOTIC DYNAMICS WITH WEAK PERIODIC PERTURBATIONS [J].
BRAIMAN, Y ;
GOLDHIRSCH, I .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2545-2548
[2]   Predicting chaotic time series with wavelet networks [J].
1600, Elsevier Science B.V., Amsterdam, Netherlands (85) :1-2
[3]   FEEDBACK-CONTROL OF CHAOS IN SPATIOTEMPORAL SYSTEMS [J].
HU, G ;
QU, ZL ;
HE, KF .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (04) :901-936
[4]   DYNAMICS OF ADAPTIVE SYSTEMS [J].
HUBERMAN, BA ;
LUMER, E .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1990, 37 (04) :547-550
[5]  
JACKSON EA, 1991, PHYSICA D, V50, P341, DOI 10.1016/0167-2789(91)90004-S
[6]   SUPPRESSION OF CHAOS BY RESONANT PARAMETRIC PERTURBATIONS [J].
LIMA, R ;
PETTINI, M .
PHYSICAL REVIEW A, 1990, 41 (02) :726-733
[7]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199
[8]   CONTROLLING CHEMICAL CHAOS [J].
PENG, B ;
PETROV, V ;
SHOWALTER, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (13) :4957-4959
[9]   WAVELET NETWORKS [J].
ZHANG, QG ;
BENVENISTE, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (06) :889-898