G protein βγ-subunits activated by serotonin mediate presynaptic inhibition by regulating vesicle fusion properties

被引:56
作者
Photowala, H
Blackmer, T
Schwartz, E
Hamm, HE
Alford, S
机构
[1] Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA
[2] Vanderbilt Univ, Sch Med, Dept Pharmacol, Nashville, TN 37232 USA
关键词
synaptic transmission; kiss and run; glutamate release; 5-hydroxytrytamine;
D O I
10.1073/pnas.0600509103
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neurotransmitters are thought to be released as quanta, where synaptic vesicles deliver packets of neurotransmitter to the synaptic cleft by fusion with the plasma membrane. However, synaptic vesicles may undergo incomplete fusion. We provide evidence that G protein-coupled receptors inhibit release by causing such incomplete fusion. 5-hydroxytryptamine (5-HT) receptor signaling potently inhibits excitatory postsynaptic currents (EPSCs) between lamprey reticulospinal axons and their postsynaptic targets by a direct action on the vesicle fusion machinery. We show that 5-HT receptor-mediated presynaptic inhibition, at this synapse, involves a reduction in EPSC quantal size. Quantal size was measured directly by comparing unitary quantal amplitudes of paired EPSCs before and during 5-HT application and indirectly by determining the effect of 5-HT on the relationship between mean-evoked EPSC amplitude and variance. Results from FM dye-labeling experiments indicate that 5-HT prevents full fusion of vesicles. 5-HT reduces FM1-43 staining of vesicles with a similar efficacy to its effect on the EPSC. However, destaining of FM1-43-labeled vesicles is abolished by lower concentrations of 5-HT that leave a substantial EPSC. The use of a water-soluble membrane impermeant quenching agent in the extracellular space reduced FM1-43 fluorescence during stimulation in 5-HT. Thus vesicles contact the extracellular space during inhibition of synaptic transmission by 5-HT. We conclude that 5-HT, via free G beta gamma, prevents the collapse of synaptic vesicles into the presynaptic membrane.
引用
收藏
页码:4281 / 4286
页数:6
相关论文
共 46 条
[1]   Single synaptic vesicles fusing transiently and successively without loss of identity [J].
Aravanis, AM ;
Pyle, JL ;
Tsien, RW .
NATURE, 2003, 423 (6940) :643-647
[2]   Secretion: Dense-core vesicles can kiss-and-run too [J].
Artalejo, CR ;
Elhamdani, A ;
Palfrey, HC .
CURRENT BIOLOGY, 1998, 8 (02) :R62-R65
[3]   Fusion pore dynamics are regulated by synaptotagmin•t-SNARE interactions [J].
Bai, JH ;
Wang, CT ;
Richards, DA ;
Jackson, MB ;
Chapman, ER .
NEURON, 2004, 41 (06) :929-942
[4]   OPTICAL ANALYSIS OF SYNAPTIC VESICLE RECYCLING AT THE FROG NEUROMUSCULAR-JUNCTION [J].
BETZ, WJ ;
BEWICK, GS .
SCIENCE, 1992, 255 (5041) :200-203
[5]   G protein βγ directly regulates SNARE protein fusion machinery for secretory granule exocytosis [J].
Blackmer, T ;
Larsen, EC ;
Bartleson, C ;
Kowalchyk, JA ;
Yoon, EJ ;
Preininger, AM ;
Alford, S ;
Hamm, HE ;
Martin, TFJ .
NATURE NEUROSCIENCE, 2005, 8 (04) :421-425
[6]   G protein βγ subunit-mediated presynaptic inhibition:: Regulation of exocytotic fusion downstream of Ca2+ entry [J].
Blackmer, T ;
Larsen, EC ;
Takahashi, M ;
Martin, TFJ ;
Alford, S ;
Hamm, HE .
SCIENCE, 2001, 292 (5515) :293-297
[7]   5-HYDROXYTRYPTAMINE DEPRESSES RETICULOSPINAL EXCITATORY POSTSYNAPTIC POTENTIALS IN MOTONEURONS OF THE LAMPREY [J].
BUCHANAN, JT ;
GRILLNER, S .
NEUROSCIENCE LETTERS, 1991, 122 (01) :71-74
[8]   Presynaptic inhibition of calcium-dependent and -independent release elicited with ionomycin, gadolinium, and alpha-latrotoxin in the hippocampus [J].
Capogna, M ;
Gahwiler, BH ;
Thompson, SM .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 75 (05) :2017-2028
[9]   Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release [J].
Catterall, WA .
MOLECULAR AND FUNCTIONAL DIVERSITY OF ION CHANNELS AND RECEPTORS, 1999, 868 :144-159
[10]   TURNOVER OF TRANSMITTER AND SYNAPTIC VESICLES AT FROG NEUROMUSCULAR JUNCTION [J].
CECCARELLI, B ;
HURLBUT, WP ;
MAURO, A .
JOURNAL OF CELL BIOLOGY, 1973, 57 (02) :499-524