Poxvirus vaccines for cancer and HIV therapy

被引:33
作者
Essajee, S [1 ]
Kaufman, HL [1 ]
机构
[1] Columbia Univ, Dept Surg & Pathol, New York, NY 10027 USA
关键词
cancer; dendritic cells; HIV; paxviruses; vaccines;
D O I
10.1517/14712598.4.4.575
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The poxviridae have a long history of causing disease in society, and their biological effects in humans and other mammals have been extensively studied. In the 1980s, genetic engineering techniques were applied to, vaccinia in order to create replicating recombinant vectors that could express inserted genes encoding influenza virus proteins. In animal models, these recombinant viruses were able to deliver their foreign antigens to the immune system and elicit a specific adaptive immune response. Since then, improvements in our understanding of immunobiology, as well as technical advances in bioengineering, have led to the creation and clinical testing of a large number of recombinant poxviruses as candidate vaccines. Poxviruses can infect a broad range of cells, replicate with high efficiency and elicit strong immune responses - factors that make them especially well-suited as vaccines for the prevention and treatment of human immunodeficiency virus (HIV) and cancer. Both of these diseases are characterised by chronic antigen expression in the setting of focal or global deficits in the immune system that hamper the generation of protective immunity. This review traces the history of poxviruses as pathogens and immunogens, examines some of the approaches that have been taken to design poxviral vaccines for HIV and cancer and summarises the results of existing clinical trials of these vectors. In addition, the review aims to identify some of the factors that may shape the development of future therapies based on recombinant poxviruses.
引用
收藏
页码:575 / 588
页数:14
相关论文
共 89 条
[1]  
Aarts WM, 2002, CANCER RES, V62, P5770
[2]   Clinical studies of human papilloma vaccines in pre-invasive and invasive cancer [J].
Adams, M ;
Borysiewicz, L ;
Fiander, A ;
Man, S ;
Jasani, B ;
Navabi, H ;
Lipetz, C ;
Evans, AS ;
Mason, M .
VACCINE, 2001, 19 (17-19) :2549-2556
[3]   The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals [J].
Addo, MM ;
Altfeld, M ;
Rosenberg, ES ;
Eldridge, RL ;
Philips, MN ;
Habeeb, K ;
Khatri, A ;
Brander, C ;
Robbins, GK ;
Mazzara, GP ;
Goulder, PJR ;
Walker, BD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (04) :1781-1786
[4]   Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine [J].
Amara, RR ;
Villinger, F ;
Altman, JD ;
Lydy, SL ;
O'Neil, SP ;
Staprans, SI ;
Montefiori, DC ;
Xu, Y ;
Herndon, JG ;
Wyatt, LS ;
Candido, MA ;
Kozyr, NL ;
Earl, PL ;
Smith, JM ;
Ma, HL ;
Grimm, BD ;
Hulsey, ML ;
McClure, HM ;
McNicholl, JM ;
Moss, B ;
Robinson, HL .
VACCINE, 2002, 20 (15) :1949-1955
[5]   Immunobiology of dendritic cells [J].
Banchereau, J ;
Briere, F ;
Caux, C ;
Davoust, J ;
Lebecque, S ;
Liu, YT ;
Pulendran, B ;
Palucka, K .
ANNUAL REVIEW OF IMMUNOLOGY, 2000, 18 :767-+
[6]   Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination [J].
Barouch, DH ;
Santra, S ;
Schmitz, JE ;
Kuroda, MJ ;
Fu, TM ;
Wagner, W ;
Bilska, M ;
Craiu, A ;
Zheng, XX ;
Krivulka, GR ;
Beaudry, K ;
Lifton, MA ;
Nickerson, CE ;
Trigona, WL ;
Punt, K ;
Freed, DC ;
Guan, LM ;
Dubey, S ;
Casimiro, D ;
Simon, A ;
Davies, ME ;
Chastain, M ;
Strom, TB ;
Gelman, RS ;
Montefiori, DC ;
Lewis, MG ;
Emini, EA ;
Shiver, JW ;
Letvin, NL .
SCIENCE, 2000, 290 (5491) :486-492
[7]   Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF [J].
Barouch, DH ;
Santra, S ;
Tenner-Racz, K ;
Racz, P ;
Kuroda, MJ ;
Schmitz, JE ;
Jackson, SS ;
Lifton, MA ;
Freed, DC ;
Perry, HC ;
Davies, ME ;
Shiver, JW ;
Letvin, NL .
JOURNAL OF IMMUNOLOGY, 2002, 168 (02) :562-568
[8]   Reduction of simian-human immunodeficiency virus 89.6P viremia in rhesus monkeys by recombinant modified vaccinia virus Ankara vaccination [J].
Barouch, DH ;
Santra, S ;
Kuroda, MJ ;
Schmitz, JE ;
Plishka, R ;
Buckler-White, A ;
Gaitan, AE ;
Zin, R ;
Nam, JH ;
Wyatt, LS ;
Lifton, MA ;
Nickerson, CE ;
Moss, B ;
Montefiori, DC ;
Hirsch, VM ;
Letvin, NL .
JOURNAL OF VIROLOGY, 2001, 75 (11) :5151-5158
[9]   Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: A review [J].
Berinstein, NL .
JOURNAL OF CLINICAL ONCOLOGY, 2002, 20 (08) :2197-2207
[10]   Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses:: Relationship to viral load in untreated HIV infection [J].
Betts, MR ;
Ambrozak, DR ;
Douek, DC ;
Bonhoeffer, S ;
Brenchley, JM ;
Casazza, JP ;
Koup, RA ;
Picker, LJ .
JOURNAL OF VIROLOGY, 2001, 75 (24) :11983-11991