Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films

被引:136
作者
Angadi, Maki A.
Watanabe, Taku
Bodapati, Arun
Xiao, Xingcheng
Auciello, Orlando
Carlisle, John A.
Eastman, Jeffrey A.
Keblinski, Pawel
Schelling, Patrick K.
Phillpot, Simon R. [1 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[3] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[4] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[5] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA
[6] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2199974
中图分类号
O59 [应用物理学];
学科分类号
摘要
Although diamond has the highest known room temperature thermal conductivity, k similar to 2200 W/m K, highly sp(3) amorphous carbon films have k < 15 W/m K. We carry out an integrated experimental and simulation study of thermal transport in ultrananocrystalline diamond (UNCD) films. The experiments show that UNCD films with a grain size of 3-5 nm have thermal conductivities as high as k=12 W/m K at room temperature, comparable with that of the most conductive amorphous diamond films. This value corresponds to a grain boundary (Kapitza) conductance greater than 3000 MW/m(2) K, which is ten times larger than that previously seen in any material. Our simulations of both UNCD and individual diamond grain boundaries yield values for the grain boundary conductance consistent with the experimentally obtained value, leading us to conclude that thermal transport in UNCD is controlled by the intrinsic properties of the grain boundaries. (c) 2006 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Critical aspects of high-performance microprocessor packaging [J].
Atluri, VP ;
Mahajan, RV ;
Patel, PR ;
Mallik, D ;
Tang, J ;
Wakharkar, VS ;
Chrysler, GM ;
Chiu, CP ;
Choksi, GN ;
Viswanath, RS .
MRS BULLETIN, 2003, 28 (01) :21-34
[2]   Materials science and fabrication processes for a new MEMS technoloey based on ultrananocrystalline diamond thin films [J].
Auciello, O ;
Birrell, J ;
Carlisle, JA ;
Gerbi, JE ;
Xiao, XC ;
Peng, B ;
Espinosa, HD .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (16) :R539-R552
[3]  
BERMAN R, 1979, PROPERTIES DIAMOND
[4]   Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films [J].
Bhattacharyya, S ;
Auciello, O ;
Birrell, J ;
Carlisle, JA ;
Curtiss, LA ;
Goyette, AN ;
Gruen, DM ;
Krauss, AR ;
Schlueter, J ;
Sumant, A ;
Zapol, P .
APPLIED PHYSICS LETTERS, 2001, 79 (10) :1441-1443
[5]   Interpretation of the Raman spectra of ultrananocrystalline diamond [J].
Birrell, J ;
Gerbi, JE ;
Auciello, O ;
Gibson, JM ;
Johnson, J ;
Carlisle, JA .
DIAMOND AND RELATED MATERIALS, 2005, 14 (01) :86-92
[6]   Bonding structure in nitrogen doped ultrananocrystalline diamond [J].
Birrell, J ;
Gerbi, JE ;
Auciello, O ;
Gibson, JM ;
Gruen, DM ;
Carlisle, JA .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (09) :5606-5612
[7]   Thermal conductivity of amorphous carbon thin films [J].
Bullen, AJ ;
O'Hara, KE ;
Cahill, DG ;
Monteiro, O ;
von Keudell, A .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (11) :6317-6320
[8]   THERMAL-CONDUCTIVITY OF ALPHA-SIH THIN-FILMS [J].
CAHILL, DG ;
KATIYAR, M ;
ABELSON, JR .
PHYSICAL REVIEW B, 1994, 50 (09) :6077-6081
[9]   Thermometry and thermal transport in micro/nanoscale solid-state devices and structures [J].
Cahill, DG ;
Goodson, KE ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02) :223-241
[10]   THERMAL-CONDUCTIVITY OF AMORPHOUS SOLIDS ABOVE THE PLATEAU [J].
CAHILL, DG ;
POHL, RO .
PHYSICAL REVIEW B, 1987, 35 (08) :4067-4073