Identification of Parallel-Cascade Wiener Systems Using Joint Diagonalization of Third-Order Volterra Kernel Slices

被引:25
作者
Kibangou, Alain Y. [1 ]
Favier, Gerard [2 ]
机构
[1] Univ Toulouse, CNRS, LAAS, F-31077 Toulouse, France
[2] Univ Nice Sophia Antipolis, CNRS, Lab 13S, Sophia Antipolis, France
关键词
Joint diagonalization; nonlinear systems; parallel-cascade Wiener systems; parameter estimation; Volterra kernels; ALGORITHM;
D O I
10.1109/LSP.2008.2011706
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter is concerned with the parameter estimation of linear and nonlinear subsystems of Parallel-Cascade Wiener Systems (PCWS). We first present the relationship between a PCWS and its associated Volterra model. We show that the coefficients of the linear subsystems can be obtained using a joint diagonalization of the third-order Volterra kernel slices. Then, the coefficients of the nonlinear subsystems are estimated using the least square algorithm. The proposed parameter estimation method is illustrated by means of simulation results.
引用
收藏
页码:188 / 191
页数:4
相关论文
共 16 条
[1]   IDENTIFICATION OF SYSTEMS CONTAINING LINEAR DYNAMIC AND STATIC NON-LINEAR ELEMENTS [J].
BILLINGS, SA ;
FAKHOURI, SY .
AUTOMATICA, 1982, 18 (01) :15-26
[2]   FADING MEMORY AND THE PROBLEM OF APPROXIMATING NONLINEAR OPERATORS WITH VOLTERRA SERIES [J].
BOYD, S ;
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (11) :1150-1161
[3]  
GHOGHO M, 1998, IEE C NONL SIGN IM P
[4]   A bibliography on nonlinear system identification [J].
Giannakis, GB ;
Serpedin, E .
SIGNAL PROCESSING, 2001, 81 (03) :533-580
[5]  
Harshman R. A., 1970, UCLA working papers in phonetics, DOI DOI 10.1134/S0036023613040165
[6]   Wiener-Hammerstein systems modeling using diagonal Volterra kernels coefficients [J].
Kibangou, AY ;
Favier, G .
IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (06) :381-384
[7]   PARALLEL CASCADE IDENTIFICATION AND KERNEL ESTIMATION FOR NONLINEAR-SYSTEMS [J].
KORENBERG, MJ .
ANNALS OF BIOMEDICAL ENGINEERING, 1991, 19 (04) :429-455
[8]   REPRESENTATION AND APPROXIMATION OF NON-LINEAR SYSTEMS .2. DISCRETE-TIME [J].
PALM, G .
BIOLOGICAL CYBERNETICS, 1979, 34 (01) :49-52
[9]   Parallel factor analysis in sensor array processing [J].
Sidiropoulos, ND ;
Bro, R ;
Giannakis, GB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (08) :2377-2388
[10]  
SILVEIRA D, 2005, P 13 GALL ARS OTH CO, P405