Phononics in low-dimensional materials

被引:275
作者
Balandin, Alexander A. [1 ,2 ]
Nika, Denis L. [1 ,2 ,3 ]
机构
[1] Univ Calif Riverside, Bourns Coll Engn, Dept Elect Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Bourns Coll Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
[3] Moldova State Univ, Dept Theoret Phys, MD-2009 Kishinev, Moldova
基金
美国国家科学基金会;
关键词
CONFINED ACOUSTIC PHONONS; THERMAL-CONDUCTIVITY; GRAPHENE NANORIBBONS; TRANSPORT; RECTIFICATION; ENHANCEMENT; NANOWIRES; MECHANISM; MOBILITY;
D O I
10.1016/S1369-7021(12)70117-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phonons - quanta of crystal lattice vibrations - reveal themselves in all electrical, thermal, and optical phenomena in materials. Nanostructures open exciting opportunities for tuning the phonon energy spectrum and related material properties for specific applications. The possibilities for controlled modification of the phonon interactions and transport - referred to as phonon engineering or phononics - increased even further with the advent of graphene and two-dimensional van der Waals materials. We describe methods for tuning the phonon spectrum and engineering the thermal properties of the low-dimensional materials via ribbon edges, grain boundaries, isotope composition, defect concentration, and atomic-plane orientation.
引用
收藏
页码:266 / 275
页数:10
相关论文
共 109 条
[91]   Mechanism of thermal conductivity reduction in few-layer graphene [J].
Singh, Dhruv ;
Murthy, Jayathi Y. ;
Fisher, Timothy S. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (04)
[92]   Electron interaction with confined acoustic phonons in quantum wires subjected to a magnetic field [J].
Svizhenko, A ;
Balandin, A ;
Bandyopadhyay, S ;
Stroscio, MA .
PHYSICAL REVIEW B, 1998, 57 (08) :4687-4693
[93]   Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier [J].
Terraneo, M ;
Peyrard, M ;
Casati, G .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :943021-943024
[94]   Modification of graphene properties due to electron-beam irradiation [J].
Teweldebrhan, D. ;
Balandin, A. A. .
APPLIED PHYSICS LETTERS, 2009, 94 (01)
[95]   Engineering of the nonradiative transition rates in modulation-doped multiple-quantum wells [J].
Veliadis, JVD ;
Khurgin, JB ;
Ding, YJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (07) :1155-1160
[96]   Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility [J].
Wei, Ning ;
Xu, Lanqing ;
Wang, Hui-Qiong ;
Zheng, Jin-Cheng .
NANOTECHNOLOGY, 2011, 22 (10)
[97]   In-plane lattice thermal conductivities of multilayer graphene films [J].
Wei, Zhiyong ;
Ni, Zhonghua ;
Bi, Kedong ;
Chen, Minhua ;
Chen, Yunfei .
CARBON, 2011, 49 (08) :2653-2658
[98]   Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime [J].
Wingert, Matthew C. ;
Chen, Zack C. Y. ;
Dechaumphai, Edward ;
Moon, Jaeyun ;
Kim, Ji-Hun ;
Xiang, Jie ;
Chen, Renkun .
NANO LETTERS, 2011, 11 (12) :5507-5513
[99]   The phonon dispersion of graphite revisited [J].
Wirtz, L ;
Rubio, A .
SOLID STATE COMMUNICATIONS, 2004, 131 (3-4) :141-152
[100]   Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory [J].
Yan, Jia-An ;
Ruan, W. Y. ;
Chou, M. Y. .
PHYSICAL REVIEW B, 2008, 77 (12)