A core-shell electrode for dynamically and statically stable Li-S battery chemistry

被引:130
作者
Chung, Sheng-Heng
Chang, Chi-Hao
Manthiram, Arumugam [1 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
关键词
LITHIUM-SULFUR BATTERIES; SELF-DISCHARGE BEHAVIOR; HIGH-ENERGY DENSITY; CARBON; CATHODE; PERFORMANCE; COMPOSITES; SEPARATOR; STABILITY; POROSITY;
D O I
10.1039/c6ee01280a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sulfur is an appealing cathode material for establishing advanced lithium batteries as it offers a high theoretical capacity of 1675 mA h g(-1) at low material and operating costs. However, the lithium-sulfur (Li-S) electrochemical cells face several formidable challenges arising from both the materials chemistry (e.g., low electrochemical utilization of sulfur and severe polysulfide diffusion) and battery chemistry (e.g., dynamic and static instability and low sulfur loadings). Here, we present the design of a core-shell cathode with a pure sulfur core shielded within a conductive shell-shaped electrode. The new electrode configuration allows Li-S cells to load with a high amount of sulfur (sulfur loadings of up to 30 mg cm(-2) and sulfur content approaching 70 wt%). The core-shell cathodes demonstrate a superior dynamic and static electrochemical stability in Li-S cells. The high-loading cathodes exhibit (i) a high sulfur utilization of up to 97% at C/20-C/2 rates and (ii) a low self-discharge during long-term cell storage for a three-month rest period and at different cell-storage conditions. Finally, a polysulfide-trap cell configuration is designed to evidence the eliminations of polysulfide diffusion and to investigate the relationship between the electrode configuration and electrochemical characteristics. The comprehensive analytical results based on the high-loading cathodes suggest that (i) the core-shell cathode is a promising solution for designing highly reversible Li-S cells and (ii) the polysulfide-trap cell configuration is a viable approach to qualitatively evaluating the presence or absence of polysulfide diffusion.
引用
收藏
页码:3188 / 3200
页数:13
相关论文
共 63 条
[1]   Prospects and Limits of Energy Storage in Batteries [J].
Abraham, K. M. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (05) :830-844
[2]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[3]   Improved cycling stability of lithium-sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent [J].
Balach, Juan ;
Jaumann, Tony ;
Klose, Markus ;
Oswald, Steffen ;
Eckert, Juergen ;
Giebeler, Lars .
JOURNAL OF POWER SOURCES, 2016, 303 :317-324
[4]   Functional Mesoporous Carbon-Coated Separator for Long-Life, High-Energy Lithium-Sulfur Batteries [J].
Balach, Juan ;
Jaumann, Tony ;
Klose, Markus ;
Oswald, Steffen ;
Eckert, Juergen ;
Giebeler, Lars .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (33) :5285-5291
[5]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[6]   New insights into the limiting parameters of the Li/S rechargeable cell [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Alloin, Fannie ;
Patoux, Sebastien .
JOURNAL OF POWER SOURCES, 2012, 199 :322-330
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]   A layer-by-layer supramolecular structure for a sulfur cathode [J].
Bucur, Claudiu B. ;
Muldoon, John ;
Lita, Adrian .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (03) :992-998
[9]   A soft, multilayered lithium-electrolyte interface [J].
Bucur, Claudiu B. ;
Lita, Adrian ;
Osada, Naoki ;
Muldoon, John .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :112-116
[10]   Effective Stabilization of a High-Loading Sulfur Cathode and a Lithium-Metal Anode in Li-S Batteries Utilizing SWCNT-Modulated Separators [J].
Chang, Chi-Hao ;
Chung, Sheng-Heng ;
Manthiram, Arumugam .
SMALL, 2016, 12 (02) :174-179