Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions

被引:378
作者
Qin, Yong [3 ]
Hurley, Laurence H. [1 ,2 ,3 ,4 ]
机构
[1] Univ Arizona, Collaborat Res Inst BIO5, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Chem, Tucson, AZ 85721 USA
[3] Univ Arizona, Coll Pharm, Tucson, AZ 85721 USA
[4] Arizona Canc Ctr, Tucson, AZ 85724 USA
基金
美国国家卫生研究院;
关键词
G-quadruplex; promoter element; transcriptional control;
D O I
10.1016/j.biochi.2008.02.020
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In its simplest form, a DNA G-quadruplex is a four-stranded DNA structure that is composed of stacked guanine tetrads. G-quadruplex-forming sequences have been identified in eukaryotic telomeres, as well as in non-telomeric genomic regions, such as gene promoters, recombination sites, and DNA tandem repeats. Of particular interest are the G-quadruplex structures that form in gene promoter regions, which have emerged as potential targets for anticancer drug development. Evidence for the formation of G-quadruplex structures in living cells continues to grow. In this review, we examine recent studies on intramolecular G-quadruplex structures that form in the promoter regions of some human genes in living cells and discuss the biological implications of these structures. The identification of G-quadruplex structures in promoter regions provides us with new insights into the fundamental aspects of G-quadruplex topology and DNA sequence-structure relationships. Progress in G-quadruplex structural studies and the validation of the biological role of these structures in cells will further encourage the development of small molecules that target these structures to specifically modulate gene transcription. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1149 / 1171
页数:23
相关论文
共 135 条
[41]   TELOMERIC DNA OLIGONUCLEOTIDES FORM NOVEL INTRAMOLECULAR STRUCTURES CONTAINING GUANINE GUANINE BASE-PAIRS [J].
HENDERSON, E ;
HARDIN, CC ;
WALK, SK ;
TINOCO, I ;
BLACKBURN, EH .
CELL, 1987, 51 (06) :899-908
[42]   AN S1 NUCLEASE-SENSITIVE HOMOPURINE HOMOPYRIMIDINE DOMAIN IN THE C-KI-RAS PROMOTER INTERACTS WITH A NUCLEAR FACTOR [J].
HOFFMAN, EK ;
TRUSKO, SP ;
MURPHY, M ;
GEORGE, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (07) :2705-2709
[43]   The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: A thermodynamic analysis by H-1 NMR [J].
Hud, NV ;
Smith, FW ;
Anet, FAL ;
Feigon, J .
BIOCHEMISTRY, 1996, 35 (48) :15383-15390
[44]   Prevalence of quadruplexes in the human genome [J].
Huppert, JL ;
Balasubramanian, S .
NUCLEIC ACIDS RESEARCH, 2005, 33 (09) :2908-2916
[45]   G-quadruplexes in promoters throughout the human genome [J].
Huppert, Julian L. ;
Balasubramanian, Shankar .
NUCLEIC ACIDS RESEARCH, 2007, 35 (02) :406-413
[46]   Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element [J].
Hurley, Laurence H. ;
Von Hoff, Daniel D. ;
Siddiqui-Jain, Adam ;
Yang, Danzhou .
SEMINARS IN ONCOLOGY, 2006, 33 (04) :498-512
[47]  
Izbicka E, 1999, CANCER RES, V59, P639
[48]   Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug [J].
Jing, NJ ;
Hogan, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (52) :34992-34999
[49]   PLATELET-DERIVED GROWTH-FACTOR A-CHAIN GENE-TRANSCRIPTION IS MEDIATED BY POSITIVE AND NEGATIVE REGULATORY REGIONS IN THE PROMOTER [J].
KAETZEL, DM ;
MAUL, RS ;
LIU, B ;
BONTHRON, D ;
FENSTERMAKER, RA ;
COYNE, DW .
BIOCHEMICAL JOURNAL, 1994, 301 :321-327
[50]  
Keniry MA, 2001, BIOPOLYMERS, V56, P123, DOI 10.1002/1097-0282(2000/2001)56:3<123::AID-BIP10010>3.0.CO