Entanglement sharing among quantum particles with more than two orthogonal states

被引:11
作者
Dennison, KA [1 ]
Wootters, WK [1 ]
机构
[1] Williams Coll, Dept Phys, Williamstown, MA 01267 USA
来源
PHYSICAL REVIEW A | 2002年 / 65卷 / 01期
关键词
Elementary particles - Entropy - Mathematical transformations - Optimization;
D O I
10.1103/PhysRevA.65.010301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Consider a system consisting of n d-dimensional quantum particles (qudits), and suppose that we want to optimize the entanglement between each pair. One can ask the following basic question regarding the sharing of entanglement: what is the largest possible value E-max(n,d) of the minimum entanglement between any two particles in the system? (Here we take the entanglement of formation as our measure of entanglement.) For n = 3 and d=2, that is, for a system of three qubits, the answer is known: E-max(3,2) = 0.550. In this paper we consider first a system of d qudits and show that E-max(d,d)greater than or equal to1. We then consider a system of three particles, with three different values of d. Our results for the three-particle case suggest that as the dimension d increases, the particles can share a greater fraction of their entanglement capacity.
引用
收藏
页码:103011 / 103014
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[4]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[5]   Entanglement splitting of pure bipartite quantum states [J].
Bruss, D .
PHYSICAL REVIEW A, 1999, 60 (06) :4344-4348
[6]   Distributed entanglement [J].
Coffman, V ;
Kundu, J ;
Wootters, WK .
PHYSICAL REVIEW A, 2000, 61 (05) :5
[7]  
COFFMAN V, QUANTPH9907047
[8]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[9]   Entanglement of a pair of quantum bits [J].
Hill, S ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :5022-5025
[10]  
HILLERY M, QUANTPH0104107