Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity

被引:173
作者
Lee, Hyo-Jeoung [1 ]
Song, Jae Yong [1 ]
Kim, Beom Soo [1 ]
机构
[1] Chungbuk Natl Univ, Dept Chem Engn, Cheongju 361763, Chungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
copper nanoparticles; Magnolia kobus; leaf extract; antibacterial activity; SILVER NANOPARTICLES; ANTIMICROBIAL ACTIVITY; ESCHERICHIA-COLI; RAPID SYNTHESIS; BACTERIA; GENERATION; TOXICITY; AG;
D O I
10.1002/jctb.4052
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BAKGROUND: Biological methods for metal nanoparticle synthesis using plant extracts have been suggested as possible ecofriendly alternatives to chemical and physical methods. In the present study, copper nanoparticles were biologically synthesized using Magnolia kobus leaf extract as reducing agent and their antibacterial activity was evaluated against Escherichia coli. RESULTS: On treatment of aqueous solution of CuSO4 center dot 5H(2)O with Magnolia kobus leaf extract, stable copper nanoparticles were formed. UV-vis spectroscopy was used to monitor the quantitative formation of copper nanoparticles. The synthesized nanoparticles were characterized with inductively coupled plasma spectrometry (ICP), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HR-TEM). Electron microscopy analysis of copper nanoparticles indicated that they ranged in average size from 37 to 110 nm. Antibacterial tests were carried out by counting viable E. coli cells after 24 h growth in shake flasks containing latex foams coated with copper nanoparticles. As a result, foams coated with biologically synthesized copper nanoparticles showed higher antibacterial activity compared with foams untreated and foams treated with chemically synthesized copper nanoparticles using sodium borohydride and Tween 20. The antibacterial activities were inversely proportional to the average nanoparticle sizes. CONCLUSION: The present results show that stable copper nanoparticles can be ecofriendly synthesized using Magnolia kobus leaf extract, offering an inexpensive alternative to antibacterial silver nanoparticles. (C) 2013 Society of Chemical Industry
引用
收藏
页码:1971 / 1977
页数:7
相关论文
共 30 条
[1]   Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose [J].
Antony, Jacob Joe ;
Sivalingam, Periyasamy ;
Siva, Durairaj ;
Kamalakkannan, Soundararajan ;
Anbarasu, Kumarasamy ;
Sukirtha, Raman ;
Krishnan, Muthukalingan ;
Achiraman, Shanmugam .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2011, 88 (01) :134-140
[2]   Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species [J].
Carlson, C. ;
Hussain, S. M. ;
Schrand, A. M. ;
Braydich-Stolle, L. K. ;
Hess, K. L. ;
Jones, R. L. ;
Schlager, J. J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (43) :13608-13619
[3]   Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria [J].
Choi, Okkyoung ;
Hu, Zhiqiang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (12) :4583-4588
[4]   Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties [J].
Cioffi, N ;
Torsi, L ;
Ditaranto, N ;
Tantillo, G ;
Ghibelli, L ;
Sabbatini, L ;
Bleve-Zacheo, T ;
D'Alessio, M ;
Zambonin, PG ;
Traversa, E .
CHEMISTRY OF MATERIALS, 2005, 17 (21) :5255-5262
[5]   Antibacterial activity of copper monodispersed nanoparticles into sepiolite [J].
Esteban-Cubillo, Antonio ;
Pecharroman, Carlos ;
Aguilar, Eduardo ;
Santaren, Julio ;
Moya, Jose S. .
JOURNAL OF MATERIALS SCIENCE, 2006, 41 (16) :5208-5212
[6]   The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles [J].
Ilic, Vesna ;
Saponjic, Zoran ;
Vodnik, Vesna ;
Potkonjak, Branislav ;
Jovancic, Petar ;
Nedeljkovic, Jovan ;
Radetic, Maja .
CARBOHYDRATE POLYMERS, 2009, 78 (03) :564-569
[7]   Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter [J].
Jain, P ;
Pradeep, T .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 90 (01) :59-63
[8]   Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs) [J].
Kvitek, Libor ;
Panacek, Ales ;
Soukupova, Jana ;
Kolar, Milan ;
Vecerova, Renata ;
Prucek, Robert ;
Holecova, Mirka ;
Zboril, Radek .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (15) :5825-5834
[9]   Two-level antibacterial coating with both release-killing and contact-killing capabilities [J].
Li, Zhi ;
Lee, Daeyeon ;
Sheng, Xiaoxia ;
Cohen, Robert E. ;
Rubner, Michael F. .
LANGMUIR, 2006, 22 (24) :9820-9823
[10]   A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment [J].
Marambio-Jones, Catalina ;
Hoek, Eric M. V. .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (05) :1531-1551