Assessing atmospheric stability and its impacts on rotor-disk wind characteristics at an onshore wind?farm

被引:116
作者
Wharton, Sonia [1 ]
Lundquist, Julie K. [2 ,3 ]
机构
[1] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA
[2] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[3] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
wind energy; planetary boundary layer; stability; turbulence intensity; wind shear; LOW-LEVEL JETS; TURBULENCE INTENSITY; SPEED PROFILES; TURBINE POWER; SHEAR;
D O I
10.1002/we.483
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As the average hub height and blade diameter of new wind turbine installations continue to increase, turbines typically encounter higher wind speeds, which enable them to extract large amounts of energy, but they also face challenges due to the complex nature of wind flow and turbulence in the planetary boundary layer (PBL). Wind speed and turbulence can vary greatly across a turbine's rotor disk; this variability is partially due to whether the PBL is stable, neutral or convective. To assess the influence of stability on these wind characteristics, we utilize a unique data set including observations from two meteorological towers, a surface flux tower and high-resolution remote-sensing sound detection and ranging (SODAR) instrument. We compare several approaches to defining atmospheric stability to the Obukhov length (L). Typical wind farm observations only allow for the calculation of a wind shear exponent (a) or horizontal turbulence intensity (IU) from cup anemometers, whereas SODAR gives measurements at multiple heights in the rotor disk of turbulence intensity (I) in the latitudinal (Iu), longitudinal (Iv) and vertical (Iw) directions and turbulence kinetic energy (TKE). Two methods for calculating horizontal Ifrom SODAR data are discussed. SODAR stability parameters are in high agreement with the more physically robust L,with TKE exhibiting the best agreement, and show promise for accurate characterizations of stability. Vertical profiles of wind speed and turbulence, which likely affect turbine power performance, are highly correlated with stability regime. At this wind farm, disregarding stability leads to over-assessments of the wind resource during convective conditions and under-assessments during stable conditions. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:525 / 546
页数:22
相关论文
共 79 条
  • [21] 2
  • [22] WIND PROFILE RELATIONSHIPS FROM WANGARA EXPERIMENT
    HICKS, BB
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1976, 102 (433) : 535 - 551
  • [23] Sphere anemometer -: a faster alternative solution to cup anemometry
    Hoelling, M.
    Schulte, B.
    Barth, S.
    Peinke, J.
    [J]. SCIENCE OF MAKING TORQUE FROM WIND, 2007, 75
  • [24] Honhoff S, 2007, AWEA WIND SPEED EN W
  • [25] Hunterm R, R1209EN RISO RIS NAT
  • [26] IEC, 2005, IEC Standard 61400-12-1
  • [27] JOFFRE SM, 1984, J CLIM APPL METEOROL, V23, P1196, DOI 10.1175/1520-0450(1984)023<1196:PLATER>2.0.CO
  • [28] 2
  • [29] JUSTUS CG, 1976, GEOPHYS RES LETT, V3, P261, DOI 10.1029/GL003i005p00261
  • [30] Kaimal J., 1994, ATMOSPHERIC BOUNDARY, DOI [DOI 10.1093/OSO/9780195062397.001.0001, 10.1093/oso/9780195062397.001.0001]