A robust optimization approach to inventory theory

被引:419
作者
Bertsimas, D
Thiele, A
机构
[1] MIT, Sloan Sch Management, Cambridge, MA 02139 USA
[2] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
[3] Lehigh Univ, Dept Ind & Syst Engn, Bethlehem, PA 18015 USA
关键词
D O I
10.1287/opre.1050.0238
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a general methodology based on robust optimization to address the problem of optimally controlling a supply chain subject to stochastic demand in discrete time. This problem has been studied in the past using dynamic programming, which suffers from dimensionality problems and assumes full knowledge of the demand distribution. The proposed approach takes into account the uncertainty of the demand in the supply chain without assuming a specific distribution, while remaining highly tractable and providing insight into the corresponding optimal policy. It also allows adjustment of the level of robustness of the solution to trade off performance and protection against uncertainty. An attractive feature of the proposed approach is its numerical tractability, especially when compared to multidimensional dynamic programming problems in complex supply chains, as the robust problem is of the same difficulty as the nominal problem, that is, a linear programming problem when there are no fixed costs, and a mixed-integer programming problem when fixed costs are present. Furthermore, we show that the optimal policy obtained in the robust approach is identical to the optimal policy obtained in the nominal case for a modified and explicitly computable demand sequence. In this way, we show that the structure of the optimal robust policy is of the same base-stock character as the optimal stochastic policy for a wide range of inventory problems in single installations, series systems, and general supply chains. Preliminary computational results are very promising.
引用
收藏
页码:150 / 168
页数:19
相关论文
共 24 条
[1]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[2]   Robust solutions of Linear Programming problems contaminated with uncertain data [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICAL PROGRAMMING, 2000, 88 (03) :411-424
[3]   Robust solutions of uncertain linear programs [J].
Ben-Tal, A ;
Nemirovski, A .
OPERATIONS RESEARCH LETTERS, 1999, 25 (01) :1-13
[4]  
BERTSEKAS D, 1995, DYNAMIC OPTIMAL CONT, V1
[5]  
Bertsekas D. P., 1996, Neuro Dynamic Programming, V1st
[6]   The price of robustness [J].
Bertsimas, D ;
Sim, M .
OPERATIONS RESEARCH, 2004, 52 (01) :35-53
[7]   Robust discrete optimization and network flows [J].
Bertsimas, D ;
Sim, M .
MATHEMATICAL PROGRAMMING, 2003, 98 (1-3) :49-71
[8]   On the relation between option and stock prices: A convex optimization approach [J].
Bertsimas, D ;
Popescu, I .
OPERATIONS RESEARCH, 2002, 50 (02) :358-374
[9]   OPTIMAL POLICIES FOR A MULTI-ECHELON INVENTORY PROBLEM [J].
CLARK, AJ ;
SCARF, H .
MANAGEMENT SCIENCE, 1960, 6 (04) :475-490
[10]   Robust solutions to uncertain semidefinite programs [J].
El Ghaoui, L ;
Oustry, F ;
Lebret, H .
SIAM JOURNAL ON OPTIMIZATION, 1998, 9 (01) :33-52