Micromixing Within Microfluidic Devices

被引:349
作者
Capretto, Lorenzo [1 ]
Cheng, Wei [1 ]
Hill, Martyn [1 ]
Zhang, Xunli [1 ]
机构
[1] Univ Southampton, Sch Engn Sci, Southampton SO17 1BJ, Hants, England
来源
MICROFLUIDICS: TECHNOLOGIES AND APPLICATIONS | 2011年 / 304卷
基金
英国工程与自然科学研究理事会;
关键词
Active micromixers; Microfluidics; Micromixing; Mixing principles; Passive micromixers; ON-A-CHIP; DIFFERENT INTERDIGITAL MICROMIXERS; SERPENTINE LAMINATING MICROMIXER; MOLECULAR-WEIGHT DISTRIBUTION; TOTAL ANALYSIS SYSTEMS; RADICAL POLYMERIZATION; STATIC MICROMIXERS; CHEMICAL-REACTIONS; MULTIPHASE FLOW; MASS-PRODUCTION;
D O I
10.1007/128_2011_150
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Micromixing is a crucial process within microfluidic systems such as micro total analysis systems (mu TAS). A state-of-art review on microstructured mixing devices and their mixing phenomena is given. The review first presents an overview of the characteristics of fluidic behavior at the microscale and their implications in microfluidic mixing processes. According to the two basic principles exploited to induce mixing at the microscale, micromixers are generally classified as being passive or active. Passive mixers solely rely on pumping energy, whereas active mixers rely on an external energy source to achieve mixing. Typical types of passive micromixers are discussed, including T- or Y-shaped, parallel lamination, sequential, focusing enhanced mixers, and droplet micromixers. Examples of active mixers using external forces such as pressure field, electrokinetic, dielectrophoretic, electrowetting, magneto-hydrodynamic, and ultrasound to assist mixing are presented. Finally, the advantages and disadvantages of mixing in a microfluidic environment are discussed.
引用
收藏
页码:27 / 68
页数:42
相关论文
共 207 条
[1]   A millisecond micromixer via single-bubble-based acoustic streaming [J].
Ahmed, Daniel ;
Mao, Xiaole ;
Shi, Jinjie ;
Juluri, Bala Krishna ;
Huang, Tony Jun .
LAB ON A CHIP, 2009, 9 (18) :2738-2741
[2]   Mixing in microreactors: effectiveness of lamination segments as a form of feed on product distribution for multiple reactions [J].
Aoki, N ;
Hasebe, S ;
Mae, K .
CHEMICAL ENGINEERING JOURNAL, 2004, 101 (1-3) :323-331
[3]   Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles [J].
Asgar, Ali ;
Bhagat, S. ;
Papautsky, Ian .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (08)
[4]   TURBULENT MICROMIXING IN CHEMICAL REACTORS - A REVIEW [J].
BADYGA, J ;
POHORECKI, R .
CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL, 1995, 58 (02) :183-195
[5]   Interaction between chemical reactions and mixing on various scales [J].
Baldyga, J ;
Bourne, JR ;
Hearn, SJ .
CHEMICAL ENGINEERING SCIENCE, 1997, 52 (04) :457-466
[6]   A minute magneto hydro dynamic (MHD) mixer [J].
Bau, HH ;
Zhong, JH ;
Yi, MQ .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 79 (2-3) :207-215
[7]   Physics and applications of microfluidics in biology [J].
Beebe, DJ ;
Mensing, GA ;
Walker, GM .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 :261-286
[8]   Static micromixers based on large-scale industrial mixer geometry [J].
Bertsch, A ;
Heimgartner, S ;
Cousseau, P ;
Renaud, P .
LAB ON A CHIP, 2001, 1 (01) :56-60
[9]   Microstructure for efficient continuous flow mixing [J].
Bessoth, FG ;
deMello, AJ ;
Manz, A .
ANALYTICAL COMMUNICATIONS, 1999, 36 (06) :213-215
[10]   A passive planar micromixer with obstructions for mixing at low Reynolds numbers [J].
Bhagat, Ali Asgar S. ;
Peterson, Erik T. K. ;
Papautsky, Ian .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) :1017-1024