Slope failure occurs transiently due to the brittle nature of failure, of which mechanisms are dependent greatly on the ground properties. Because the failure often produces large-scale damage, techniques for predicting slope failure are in urgent demand. In the present paper, the applicability of AE to the prediction of slope failure is discussed. Firstly, characteristics of AE wave attenuation in the ground are examined. Efficient wave-guide materials, which enable us to detect AE waves generated in the ground with good sensitivity, are studied. Secondly, in order to estimate the failure process inside the ground, a new procedure is proposed to determine the b-value in realtime from the peak-amplitude distribution of acquired AE waveforms. Finally, curve-fitting techniques such as graphical analysis and the rate process analysis are applied to AE activity to predict the slope-failure time.