Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity

被引:303
作者
Smith, WW
Jiang, HB
Pei, Z
Tanaka, Y
Morita, H
Sawa, A
Dawson, VL
Dawson, TM
Ross, CA
机构
[1] Johns Hopkins Univ, Sch Med, Dept Psychiat, Div Neurobiol, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21205 USA
[4] Johns Hopkins Univ, Sch Med, Dept Physiol, Baltimore, MD 21205 USA
[5] Johns Hopkins Univ, Sch Med, Inst Cell Engn, Baltimore, MD 21205 USA
[6] Johns Hopkins Univ, Sch Med, Program Cellular & Mol Med, Baltimore, MD 21205 USA
[7] Okayama Univ, Sch Med, Dept Neuropsychiat, Okayama 7008558, Japan
关键词
D O I
10.1093/hmg/ddi396
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Parkinson's disease (PD) is a neurodegenerative movement disorder characterized by selective loss of dopaminergic neurons and the presence of Lewy bodies. Alpha-synuclein is a major component of Lewy bodies in sporadic PD, and mutations in alpha-synuclein cause autosomal-dominant hereditary PD. Here, we generated A53T mutant alpha-synuclein-inducible PC12 cell lines using the Tet-off regulatory system. Inducing expression of A53T alpha-synuclein in differentiated PC12 cells decreased proteasome activity, increased the intracellular ROS level and caused up to similar to 40% cell death, which was accompanied by mitochondrial cytochrome C release and elevation of caspase-9 and -3 activities. Cell death was partially blocked by cyclosporine A [an inhibitor of the mitochondrial permeability transition (MPT) process], z-VAD (a pan-caspase inhibitor) and inhibitors of caspase-9 and -3 but not by a caspase-8 inhibitor. Furthermore, induction of A53T alpha-synuclein increased endoplasmic reticulum (ER) stress and elevated caspase-12 activity. RNA interference to knock down caspase-12 levels or salubrinal (an ER stress inhibitor) partially protected against cell death and further reduced A53T toxicity after treatment with z-VAD. Our results indicate that both ER stress and mitochondrial dysfunction contribute to A53T alpha-synuclein-induced cell death. This study sheds light into the pathogenesis of alpha-synuclein cellular toxicity in PD and provides a cell model for screening PD therapeutic agents.
引用
收藏
页码:3801 / 3811
页数:11
相关论文
共 71 条
[1]   Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system [J].
Abeliovich, A ;
Schmitz, Y ;
Fariñas, I ;
Choi-Lundberg, D ;
Ho, WH ;
Castillo, PE ;
Shinsky, N ;
Verdugo, JMG ;
Armanini, M ;
Ryan, A ;
Hynes, M ;
Phillips, H ;
Sulzer, D ;
Rosenthal, A .
NEURON, 2000, 25 (01) :239-252
[2]  
Alam ZI, 1997, J NEUROCHEM, V69, P1326
[3]   Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra [J].
Alam, ZI ;
Jenner, A ;
Daniel, SE ;
Lees, AJ ;
Cairns, N ;
Marsden, CD ;
Jenner, P ;
Halliwell, B .
JOURNAL OF NEUROCHEMISTRY, 1997, 69 (03) :1196-1203
[4]   Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease [J].
Auluck, PK ;
Chan, HYE ;
Trojanowski, JQ ;
Lee, VMY ;
Bonini, NM .
SCIENCE, 2002, 295 (5556) :865-868
[5]   Impairment of the ubiquitin-proteasome system by protein aggregation [J].
Bence, NF ;
Sampat, RM ;
Kopito, RR .
SCIENCE, 2001, 292 (5521) :1552-1555
[6]   Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation [J].
Bennett, EJ ;
Bence, NF ;
Jayakumar, R ;
Kopito, RR .
MOLECULAR CELL, 2005, 17 (03) :351-365
[7]   Ubiquitin-proteasome system and Parkinson's diseases [J].
Betarbet, R ;
Sherer, TB ;
Greenamyre, JT .
EXPERIMENTAL NEUROLOGY, 2005, 191 :S17-S27
[8]   A selective inhibitor-of eIF2α dephosphorylation protects cells from ER stress [J].
Boyce, M ;
Bryant, KF ;
Jousse, C ;
Long, K ;
Harding, HP ;
Scheuner, D ;
Kaufman, RJ ;
Ma, DW ;
Coen, DM ;
Ron, D ;
Yuan, JY .
SCIENCE, 2005, 307 (5711) :935-939
[9]  
Cabin DE, 2002, J NEUROSCI, V22, P8797
[10]   α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease [J].
Chen, L ;
Feany, MB .
NATURE NEUROSCIENCE, 2005, 8 (05) :657-663