Clustering of high throughput gene expression data

被引:78
作者
Pirim, Harun [1 ]
Eksioglu, Burak [1 ]
Perkins, Andy D. [2 ]
Yuceer, Cetin [3 ]
机构
[1] Mississippi State Univ, Dept Ind & Syst Engn, Mississippi State, MS 39762 USA
[2] Mississippi State Univ, Dept Comp Sci & Engn, Mississippi State, MS 39762 USA
[3] Mississippi State Univ, Dept Forestry, Mississippi State, MS 39762 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Clustering; Bioinformatics; Gene expression data; High throughput data; Microarrays; COMMUNITY STRUCTURE; VARIABLE SELECTION; MICROARRAY DATA; ALGORITHM; OPTIMIZATION; MODEL; NETWORKS; CLASSIFICATION; PREDICTION; FRAMEWORK;
D O I
10.1016/j.cor.2012.03.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High throughput biological data need to be processed, analyzed, and interpreted to address problems in life sciences. Bioinformatics, computational biology, and systems biology deal with biological problems using computational methods. Clustering is one of the methods used to gain insight into biological processes, particularly at the genomics level. Clearly, clustering can be used in many areas of biological data analysis. However, this paper presents a review of the current clustering algorithms designed especially for analyzing gene expression data. It is also intended to introduce one of the main problems in bioinformatics - clustering gene expression data - to the operations research community. (c) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3046 / 3061
页数:16
相关论文
共 150 条
  • [11] Gene expression profile classification: A review
    Asyali, Musa H.
    Colak, Dilek
    Demirkaya, Omer
    Inan, Mehmet S.
    [J]. CURRENT BIOINFORMATICS, 2006, 1 (01) : 55 - 73
  • [12] Clustering of gene expression data using a local shape-based similarity measure
    Balasubramaniyan, R
    Hüllermeier, E
    Weskamp, N
    Kämper, J
    [J]. BIOINFORMATICS, 2005, 21 (07) : 1069 - 1077
  • [13] An improved algorithm for clustering gene expression data
    Bandyopadhyay, Sanghamitra
    Mukhopadhyay, Anirban
    Maulik, Ujjwal
    [J]. BIOINFORMATICS, 2007, 23 (21) : 2859 - 2865
  • [14] Combinatorial optimisation and hierarchical classifications
    Barthelemy, J.-P.
    Brucker, F.
    Osswald, C.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2007, 153 (01) : 179 - 214
  • [15] Network-Based Models in Molecular Biology
    Beyer, Andreas
    [J]. DYNAMICS ON AND OF COMPLEX NETWORKS: APPLICATIONS TO BIOLOGY, COMPUTER SCIENCE, AND THE SOCIAL SCIENCES, 2009, : 35 - 56
  • [16] Bhattacharyya M, 2009, BMC BIOINFORMATICS, V10, P1
  • [17] Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy
    Bohland, Jason W.
    Bokil, Hemant
    Pathak, Sayan D.
    Lee, Chang-Kyu
    Ng, Lydia
    Lau, Christopher
    Kuan, Chihchau
    Hawrylycz, Michael
    Mitra, Partha P.
    [J]. METHODS, 2010, 50 (02) : 105 - 112
  • [18] A generalized framework for Network Component Analysis
    Boscolo, R
    Sabatti, C
    Liao, JC
    Roychowdhury, VP
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2005, 2 (04) : 289 - 301
  • [19] On modularity clustering
    Brandes, Ulrik
    Delling, Daniel
    Gaertler, Marco
    Goerke, Robert
    Hoefer, Martin
    Nikoloski, Zoran
    Wagner, Dorothea
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (02) : 172 - 188
  • [20] Bushel Pierre R., 2009, Journal of Bioinformatics and Computational Biology, V7, P193, DOI 10.1142/S021972000900400X