High transconductance organic electrochemical transistors

被引:644
作者
Khodagholy, Dion [1 ]
Rivnay, Jonathan [1 ]
Sessolo, Michele [1 ]
Gurfinkel, Moshe [1 ]
Leleux, Pierre [1 ,2 ,3 ]
Jimison, Leslie H. [1 ]
Stavrinidou, Eleni [1 ]
Herve, Thierry [2 ]
Sanaur, Sebastien [1 ]
Owens, Roisin M. [1 ]
Malliaras, George G. [1 ]
机构
[1] MOC, CMP EMSE, Ecole Natl Super Mines, Dept Bioelect, F-13541 Gardanne, France
[2] Microvitae Technol, Pole Activite Y Morandat, F-13120 Gardanne, France
[3] INSERM, UMR 1106, Inst Neurosci Syst, Fac Med La Timone, F-13005 Marseille, France
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
欧洲研究理事会;
关键词
FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; NANOWIRE CHANNEL; ELECTRONICS; VOLTAGE; SILICON; INTERFACE; ARRAYS;
D O I
10.1038/ncomms3133
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devices, however, are largely viewed as belonging to the low-end of the performance spectrum. Here we present organic electrochemical transistors with a transconductance in the mS range, outperforming transistors from both traditional and emerging semiconductors. The transconductance of these devices remains fairly constant from DC up to a frequency of the order of 1 kHz, a value determined by the process of ion transport between the electrolyte and the channel. These devices, which continue to work even after being crumpled, are predicted to be highly relevant as transducers in biosensing applications.
引用
收藏
页数:6
相关论文
共 45 条
[1]   Batteries and electrochemical capacitors [J].
Abruna, Hector D. ;
Kiya, Yasuyuki ;
Henderson, Jay C. .
PHYSICS TODAY, 2008, 61 (12) :43-47
[2]   Materials and Applications for Large Area Electronics: Solution-Based Approaches [J].
Arias, Ana Claudia ;
MacKenzie, J. Devin ;
McCulloch, Iain ;
Rivnay, Jonathan ;
Salleo, Alberto .
CHEMICAL REVIEWS, 2010, 110 (01) :3-24
[3]   Electrical characteristics of ink-jet printed, all-polymer electrochemical transistors [J].
Basirico, L. ;
Cosseddu, P. ;
Scida, A. ;
Fraboni, B. ;
Malliaras, G. G. ;
Bonfiglio, A. .
ORGANIC ELECTRONICS, 2012, 13 (02) :244-248
[4]   Organic materials for printed electronics [J].
Berggren, M. ;
Nilsson, D. ;
Robinson, N. D. .
NATURE MATERIALS, 2007, 6 (01) :3-5
[5]   Organic bioelectronics [J].
Berggren, Magnus ;
Richter-Dahlfors, Agneta .
ADVANCED MATERIALS, 2007, 19 (20) :3201-3213
[6]   Steady-state and transient behavior of organic electrochemical transistors [J].
Bernards, Daniel A. ;
Malliaras, George G. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (17) :3538-3544
[7]   Active Control of Epithelial Cell-Density Gradients Grown Along the Channel of an Organic Electrochemical Transistor [J].
Bolin, Maria H. ;
Svennersten, Karl ;
Nilsson, David ;
Sawatdee, Anurak ;
Jager, Edwin W. H. ;
Richter-Dahlfors, Agneta ;
Berggren, Magnus .
ADVANCED MATERIALS, 2009, 21 (43) :4379-+
[8]   AlGaN/GaN HEMTs on Silicon Substrate With 206-GHz FMAX [J].
Bouzid-Driad, S. ;
Maher, H. ;
Defrance, N. ;
Hoel, V. ;
De Jaeger, J. -C. ;
Renvoise, M. ;
Frijlink, P. .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (01) :36-38
[9]   High-Transconductance Organic Thin-Film Electrochemical Transistors for Driving Low-Voltage Red-Green-Blue Active Matrix Organic Light-Emitting Devices [J].
Braga, Daniele ;
Erickson, Nicholas C. ;
Renn, Michael J. ;
Holmes, Russell J. ;
Frisbie, C. Daniel .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (08) :1623-1631
[10]   Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J].
Cao, Qing ;
Kim, Hoon-sik ;
Pimparkar, Ninad ;
Kulkarni, Jaydeep P. ;
Wang, Congjun ;
Shim, Moonsub ;
Roy, Kaushik ;
Alam, Muhammad A. ;
Rogers, John A. .
NATURE, 2008, 454 (7203) :495-U4