Slug is a direct Notch target required for initiation of cardiac cushion cellularization

被引:270
作者
Niessen, Kyle [1 ,2 ]
Fu, YangXin [1 ,3 ]
Chang, Linda [1 ,2 ]
Hoodless, Pamela A. [4 ,5 ]
McFadden, Deborah [3 ]
Karsan, Aly [1 ,2 ,3 ]
机构
[1] British Columbia Canc Agcy, Dept Med Biophys, Vancouver, BC V5Z 1L3, Canada
[2] Univ British Columbia, Expt Med Program, Vancouver, BC V6T 1Z4, Canada
[3] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC V6T 1Z4, Canada
[4] British Columbia Canc Agcy, Terry Fox Lab, Vancouver, BC V5Z 1L3, Canada
[5] Univ British Columbia, Dept Med Genet, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
10.1083/jcb.200710067
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Snail family proteins are key regulators of epithelial-mesenchymal transition, but their role in endothelial-to-mesenchymal transition (EMT) is less well studied. We show that Slug, a Snail family member, is expressed by a subset of endothelial cells as well as mesenchymal cells of the atrioventricular canal and outflow tract during cardiac cushion morphogenesis. Slug deficiency results in impaired cellularization of the cardiac cushion at embryonic day (E)-9.5 but is compensated by increased Snail expression at E10.5, which restores cardiac cushion EMT. We further demonstrate that Slug, but not Snail, is directly up-regulated by Notch in endothelial cells and that Slug expression is required for Notch-mediated repression of the vascular endothelial cadherin promoter and for promoting migration of transformed endothelial cells. In contrast, transforming growth factor beta (TGF-beta) induces Snail but not Slug. Interestingly, activation of Notch in the context of TGF-beta stimulation results in synergistic up-regulation of Snail in endothelial cells. Collectively, our data suggest that combined expression of Slug and Snail is required for EMT in cardiac cushion morphogenesis.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 53 条
[1]  
[Anonymous], 1992, PRACTICAL APPROACHES
[2]   Heart valve development - Endothelial cell signaling and differentiation [J].
Armstrong, EJ ;
Bischoff, J .
CIRCULATION RESEARCH, 2004, 95 (05) :459-470
[3]   Transforming growth factor beta in cardiovascular development and function [J].
Azhar, M ;
Schultz, JEJ ;
Grupp, I ;
Dorn, GW ;
Meneton, P ;
Molin, DGM ;
Gittenberger-de Groot, AC ;
Doetschman, T .
CYTOKINE & GROWTH FACTOR REVIEWS, 2003, 14 (05) :391-407
[4]  
Bartram U, 2001, CIRCULATION, V103, P2745
[5]   Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3 [J].
Blokzijl, A ;
Dahlqvist, C ;
Reissmann, E ;
Falk, A ;
Moliner, A ;
Lendahl, U ;
Ibáñez, CF .
JOURNAL OF CELL BIOLOGY, 2003, 163 (04) :723-728
[6]   Requirement of type III TGF-β receptor for endocardial cell transformation in the heart [J].
Brown, CB ;
Boyer, AS ;
Runyan, RB ;
Barnett, JV .
SCIENCE, 1999, 283 (5410) :2080-2082
[7]   Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors [J].
Camenisch, TD ;
Schroeder, JA ;
Bradley, J ;
Klewer, SE ;
McDonald, JA .
NATURE MEDICINE, 2002, 8 (08) :850-855
[8]   Temporal and distinct TGFβ ligand requirements during mouse and avian endocardial cushion morphogenesis [J].
Camenisch, TD ;
Molin, DGM ;
Person, A ;
Runyan, RB ;
Gittenberger-de Groot, AC ;
McDonald, JA ;
Klewer, SE .
DEVELOPMENTAL BIOLOGY, 2002, 248 (01) :170-181
[9]   The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition [J].
Carver, EA ;
Jiang, RL ;
Lan, Y ;
Oram, KF ;
Gridley, T .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (23) :8184-8188
[10]   A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis [J].
Chang, CP ;
Neilson, JR ;
Bayle, JH ;
Gestwicki, JE ;
Kuo, A ;
Stankunas, K ;
Graef, IA ;
Crabtree, GR .
CELL, 2004, 118 (05) :649-663