TAC-Scaffolded Tripeptides as Artificial Hydrolytic Receptors: A Combinatorial Approach Toward Esterase Mimics

被引:28
作者
Albada, H. Bauke [1 ]
Liskamp, Rob A. J. [1 ]
机构
[1] Univ Utrecht, Fac Sci, Utrecht Inst Pharmaceut Sci, NL-3508 TB Utrecht, Netherlands
来源
JOURNAL OF COMBINATORIAL CHEMISTRY | 2008年 / 10卷 / 06期
关键词
D O I
10.1021/cc800065a
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this report, we present the first library of tripodal synthetic receptor molecules containing three different., temporarily N-terminal protected peptide arms capable of performing hydrolytic reactions. To construct this library, the orthogonally protected triazacyclophane (TAC)-scaffold was used in the preparation of a split-mix library of 19 683 resin bound tripodal receptor molecules. For the construction of the peptide arms, three different sets of amino acids were used, each focused on one part of the catalytic triad as found in several families of hydrolytic enzymes. Therefore, in the sets of amino acids used to assemble these tripeptides, basic (containing His and Lys), nucleophilic (containing Ser and Cys), or acidic (containing Asp and Glu) amino acid residues were present. In addition, nonfunctional hydrophobic amino acid residues were introduced. Possible unfavorable electrostatic interactions of charged N-termini or their acetylation during screening were circumvented by trifluoroacetylation of the N-terminal amines. Screening was performed with a known esterase substrate, 7-acetoxycoumarin, which upon hydrolysis gave the fluorescent 7-hydroxycoumarin, leading to fluorescence of beads containing a hydrolytically active synthetic receptor. Although many synthetic receptors contain catalytic triad combinations, apparently, only a few showed hydrolytic activity. Sequence analysis of the active receptors showed that carboxylate-containing amino acids are frequently found in the acidic arm and that substrate cleavage is mediated by lysine (noncatalytic) or histidine (catalytic) residues. Kinetic analysis of resynthesized receptors showed that catalysis depended on the number of histidine residues and was not assisted by significant substrate binding.
引用
收藏
页码:814 / 824
页数:11
相关论文
共 85 条
[1]   Scaffolded amino acids as a close structural mimic of type-3 copper binding sites [J].
Albada, H. Bauke ;
Soulimani, Fouad ;
Weckhuysen, Bert M. ;
Liskamp, Rob M. J. .
CHEMICAL COMMUNICATIONS, 2007, (46) :4895-4897
[2]  
[Anonymous], 2006, MERCK IND
[3]  
[Anonymous], 1996, Bioorganic Chemistry: A Chemical Approach to Enzyme Action
[4]   DESIGN OF PEPTIDE ENZYMES (PEPZYMES) - SURFACE-SIMULATION SYNTHETIC PEPTIDES THAT MIMIC THE CHYMOTRYPSIN AND TRYPSIN ACTIVE-SITES EXHIBIT THE ACTIVITY AND SPECIFICITY OF THE RESPECTIVE ENZYME [J].
ATASSI, MZ ;
MANSHOURI, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (17) :8282-8286
[5]  
BALL P, 1994, DESIGNING MOL WORLD, P145
[6]  
Berkessel A, 1999, ANGEW CHEM INT EDIT, V38, P102, DOI 10.1002/(SICI)1521-3773(19990115)38:1/2<102::AID-ANIE102>3.0.CO
[7]  
2-H
[8]   The discovery of catalytically active peptides through combinatorial chemistry [J].
Berkessel, A .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (03) :409-419
[9]   Sequencing of peptoid peptidomimetics by Edman degradation [J].
Boeijen, A ;
Liskamp, RMJ .
TETRAHEDRON LETTERS, 1998, 39 (21) :3589-3592
[10]  
Breslow R, 2005, ARTIFICIAL ENZYMES, P1, DOI 10.1002/3527606645