Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgf11p, differentially regulates lysine 4 methylation of histone H3 in vivo

被引:77
作者
Shukla, A [1 ]
Stanojevic, N [1 ]
Duan, Z [1 ]
Sen, P [1 ]
Bhaumik, SR [1 ]
机构
[1] So Illinois Univ, Dept Biochem & Mol Biol, Sch Med, Carbondale, IL 62901 USA
关键词
D O I
10.1128/MCB.26.9.3339-3352.2006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Despite recent advances in characterizing the regulation of histone H3 lysine 4 (H3-K4) methylation at the GAL1 gene by the H2B-K123-specific deubiquitinase activity of Saccharomyces cerevisiae SAGA (Spt-Ada-Gcn5-acetyl transferase)-associated Ubp8p, our knowledge on the general role of Ubp8p at the SAGA-dependent genes is lacking. For this study, using a formaldehyde-based in vivo cross-linking and chromatin immunoprecipitation (ChIP) assay, we have analyzed the role of Ubp8p in the regulation of H3-K4 methylation at three other SAGA-dependent yeast genes, namely, PHO84, ADH1, and CUP1. Like that at GAL1, H3-K4 methylation is increased at the PHO84 core promoter in the UBP8 deletion mutant. We also show that H3-K4 methylation remains invariant at the PHO84 open reading frame in the Delta ubp8 mutant, demonstrating a highly localized role of Upb8p in regulation of H3-K4 methylation at the promoter in vivo. However, unlike that at PHO84, H3-K4 methylation at the two other SAGA-dependent genes is not controlled by Ubp8p. Interestingly, Ubp8p and H3-K4 methylation are dispensable for preinitiation complex assembly at the core promoters of these genes. Our ChIP assay further demonstrates that the association of Ubp8p with SAGA is mediated by Sgf11p, consistent with recent biochemical data. Collectively, the data show that Ubp8p differentially controls H3-K4 methylation at the SAGA-dependent promoters, revealing a complex regulatory network of histone methylation in vivo.
引用
收藏
页码:3339 / 3352
页数:14
相关论文
共 46 条
[1]   Methylation of histone H3 Lys 4 in coding regions of active genes [J].
Bernstein, BE ;
Humphrey, EL ;
Erlich, RL ;
Schneider, R ;
Bouman, P ;
Liu, JS ;
Kouzarides, T ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (13) :8695-8700
[2]   In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer [J].
Bhaumik, SR ;
Raha, T ;
Aiello, DP ;
Green, MR .
GENES & DEVELOPMENT, 2004, 18 (03) :333-343
[3]   Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo [J].
Bhaumik, SR ;
Green, MR .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (21) :7365-7371
[4]   SAGA is an essential in vivo target of the yeast acidic activator Gal4p [J].
Bhaumik, SR ;
Green, MR .
GENES & DEVELOPMENT, 2001, 15 (15) :1935-1945
[5]   Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes [J].
Boggs, BA ;
Cheung, P ;
Heard, E ;
Spector, DL ;
Chinault, AC ;
Allis, CD .
NATURE GENETICS, 2002, 30 (01) :73-76
[6]  
Brachmann CB, 1998, YEAST, V14, P115
[7]   Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae [J].
Briggs, SD ;
Bryk, M ;
Strahl, BD ;
Cheung, WL ;
Davie, JK ;
Dent, SYR ;
Winston, F ;
Allis, CD .
GENES & DEVELOPMENT, 2001, 15 (24) :3286-3295
[8]   The many HATs of transcription coactivators [J].
Brown, CE ;
Lechner, T ;
Howe, L ;
Workman, JL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (01) :15-19
[9]   Evidence that SET1, a factor required for methylation of histone H3, regulates rDNA silencing in S-cerevisiae by a sir2-independent mechanism [J].
Bryk, M ;
Briggs, SD ;
Strahl, BD ;
Curcio, MJ ;
Allis, CD ;
Winston, F .
CURRENT BIOLOGY, 2002, 12 (02) :165-170
[10]   Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription [J].
Daniel, JA ;
Torok, MS ;
Sun, ZW ;
Schieltz, D ;
Allis, CD ;
Yates, JR ;
Grant, PA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (03) :1867-1871