Multilayered Cobalt Oxide Platelets for Negative Electrode Material of a Lithium-Ion Battery

被引:149
作者
Yao, Wenli [1 ]
Yang, Jun [1 ]
Wang, Jiulin [1 ]
Nuli, Yanna [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China
关键词
D O I
10.1149/1.2987945
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Layer-controllable CoO and Co3O4 platelets were prepared by calcination of hexagonal beta-Co(OH)(2), which was synthesized via a surfactant-free hydrothermal method. As negative electrode material for lithium-ion batteries, CoO and Co3O4 platelets demonstrated high reversible capacity (more than 800 mAh/g for CoO and 600 mAh/g for Co3O4) and excellent electrochemical cycling stability. The multilayered CoO platelets showed larger capacity and much better cycling performance than the monolayer CoO platelets and CoO nanoparticles. The effect of dimension and morphology of CoO particles on the electrode behavior was discussed. (c) 2008 The Electrochemical Society. [DOI:10.1149/1.2987945] All rights reserved.
引用
收藏
页码:A903 / A908
页数:6
相关论文
共 31 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]  
BHATTACHARYYA A, 2006, EL SOC M ABSTR QUEB
[3]   Synthesis, characterization, and li-electrochemical performance of highly porous Co3O4 powders [J].
Binotto, G. ;
Larcher, D. ;
Prakash, A. S. ;
Urbina, R. Herrera ;
Hegde, M. S. ;
Tarascon, J-M. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3032-3040
[4]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[5]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[6]   Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries [J].
Do, Jing-Shan ;
Weng, Chien-Hsiang .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :323-327
[7]   Experimental evidence for electrolyte involvement in the reversible reactivity of CoO toward compounds at low potential [J].
Dollé, M ;
Poizot, P ;
Dupont, L ;
Tarascon, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (01) :A18-A21
[8]   Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries [J].
Gachot, Gregory ;
Grugeon, Sylvie ;
Armand, Michel ;
Pilard, Serge ;
Guenot, Pierre ;
Tarascon, Jean-Marie ;
Laruelle, Stephane .
JOURNAL OF POWER SOURCES, 2008, 178 (01) :409-421
[9]   An update on the reactivity of nanoparticles Co-based compounds towards Li [J].
Grugeon, S ;
Laruelle, S ;
Dupont, L ;
Tarascon, JM .
SOLID STATE SCIENCES, 2003, 5 (06) :895-904
[10]   Particle size effects on the electrochemical performance of copper oxides toward lithium [J].
Grugeon, S ;
Laruelle, S ;
Herrera-Urbina, R ;
Dupont, L ;
Poizot, P ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :A285-A292