Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression

被引:393
作者
Liu, Datong [1 ]
Pang, Jingyue [1 ]
Zhou, Jianbao [1 ]
Peng, Yu [1 ]
Pecht, Michael [2 ]
机构
[1] Harbin Inst Technol, Dept Automat Test & Control, Harbin 150080, Peoples R China
[2] Univ Maryland, CALCE, College Pk, MD 20742 USA
基金
高等学校博士学科点专项科研基金; 美国国家科学基金会;
关键词
FRAMEWORK;
D O I
10.1016/j.microrel.2013.03.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
State of health (SOH) estimation plays a significant role in battery prognostics. It is used as a qualitative measure of the capability of a lithium-ion battery to store and deliver energy in a system. At present, many, algorithms have been applied to perform prognostics for SOH estimation, especially data-driven prognostics algorithms supporting uncertainty representation and management. To describe the uncertainty in evaluation and prediction, we used the Gaussian Process Regression (GPR), a data-driven approach, to perform SOH prediction with mean and variance values as the uncertainty representation of SOH. Then, in order to realize multiple-step-ahead prognostics, we utilized an improved GPR method-combination Gaussian Process Functional Regression (GPFR)-to capture the actual trend of SOH, including global capacity degradation and local regeneration. Experimental results confirm that the proposed method can be effectively applied to lithium-ion battery monitoring and prognostics by quantitative comparison with the other GPR and GPFR models. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:832 / 839
页数:8
相关论文
共 36 条
  • [31] Gaussian process functional regression Modeling for batch data
    Shi, J. Q.
    Wang, B.
    Murray-Smith, R.
    Titterington, D. M.
    [J]. BIOMETRICS, 2007, 63 (03) : 714 - 723
  • [32] Intelligent prognostics for battery health monitoring based on sample entropy
    Widodo, Achmad
    Shim, Min-Chan
    Caesarendra, Wahyu
    Yang, Bo-Suk
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (09) : 11763 - 11769
  • [33] Williard N, 2012, MFPT 2012 P PROGN HL, P1
  • [34] Yang Q, 2012, IEEE SYS MAN CYBERN, P1, DOI 10.1109/ICSMC.2012.6377667
  • [35] A review on prognostics and health monitoring of Li-ion battery
    Zhang, Jingliang
    Lee, Jay
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (15) : 6007 - 6014
  • [36] Zhang YN, 2005, IEEE DECIS CONTR P, P3711