Nitric oxide release: Part III. Measurement and reporting

被引:303
作者
Coneski, Peter N. [1 ]
Schoenfisch, Mark H. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
关键词
SIGNAL-REGULATED KINASE; HUMAN BREAST-CANCER; INHIBITION; DENDRIMERS; CHEMISTRY; APOPTOSIS; XEROGELS; INCREASE; DONORS; CELLS;
D O I
10.1039/c2cs15271a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitric oxide's expansive physiological and regulatory roles have driven the development of therapies for human disease that would benefit from exogenous NO administration. Already a number of therapies utilizing gaseous NO or NO donors capable of storing and delivering NO have been proposed and designed to exploit NO's influence on the cardiovascular system, cancer biology, the immune response, and wound healing. As described in Nitric oxide release: Part I. Macromolecular scaffolds and Part II. Therapeutic applications, the preparation of new NO-release strategies/formulations and the study of their therapeutic utility are increasing rapidly. However, comparison of such studies remains difficult due to the diversity of scaffolds, NO measurement strategies, and reporting methods employed across disciplines. This tutorial review highlights useful analytical techniques for the detection and measurement of NO. We also stress the importance of reporting NO delivery characteristics to allow appropriate comparison of NO between studies as a function of material and intended application.
引用
收藏
页码:3753 / 3758
页数:6
相关论文
共 64 条
[1]   NITRIC-OXIDE AND CGMP CAUSE VASORELAXATION BY ACTIVATION OF A CHARYBDOTOXIN-SENSITIVE K-CHANNEL BY CGMP-DEPENDENT PROTEIN-KINASE [J].
ARCHER, SL ;
HUANG, JMC ;
HAMPL, V ;
NELSON, DP ;
SHULTZ, PJ ;
WEIR, EK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (16) :7583-7587
[2]  
Bates J.N., 1992, NEUROPROTOCOLS, V1, P141
[3]   THE USE OF GOLD ELECTRODES IN THE ELECTROCHEMICAL DETECTION OF NITRIC-OXIDE IN AQUEOUS-SOLUTION [J].
BEDIOUI, F ;
TREVIN, S ;
DEVYNCK, J .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1994, 377 (1-2) :295-298
[4]   Electrochemical nitric oxide sensors for biological samples - Principle, selected examples and applications [J].
Bedioui, F ;
Villeneuve, N .
ELECTROANALYSIS, 2003, 15 (01) :5-18
[5]   S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production [J].
Borutaite, Vilmante ;
Brown, Guy C. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (5-6) :562-566
[6]   Harnessing the hypoxia-inducible factor in cancer and ischemic disease [J].
Brahimi-Horn, M. Christiane ;
Pouyssegur, Jacques .
BIOCHEMICAL PHARMACOLOGY, 2007, 73 (03) :450-457
[7]   Nitric oxide release: Part II. Therapeutic applications [J].
Carpenter, Alexis W. ;
Schoenfisch, Mark H. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (10) :3742-3752
[8]   Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide-Releasing Silica Nanoparticles [J].
Carpenter, Alexis W. ;
Slomberg, Danielle L. ;
Rao, Kavitha S. ;
Schoenfisch, Mark H. .
ACS NANO, 2011, 5 (09) :7235-7244
[9]  
Chong ZZ, 2005, HISTOL HISTOPATHOL, V20, P299, DOI 10.14670/HH-20.299
[10]   REVERSIBLE INHIBITION OF CYTOCHROME-C-OXIDASE, THE TERMINAL ENZYME OF THE MITOCHONDRIAL RESPIRATORY-CHAIN, BY NITRIC-OXIDE - IMPLICATIONS FOR NEURODEGENERATIVE DISEASES [J].
CLEETER, MWJ ;
COOPER, JM ;
DARLEYUSMAR, VM ;
MONCADA, S ;
SCHAPIRA, AHV .
FEBS LETTERS, 1994, 345 (01) :50-54