Influence of Scaffold Size on Bactericidal Activity of Nitric Oxide-Releasing Silica Nanoparticles

被引:120
作者
Carpenter, Alexis W. [1 ]
Slomberg, Danielle L. [1 ]
Rao, Kavitha S. [1 ]
Schoenfisch, Mark H. [1 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
nitric oxide; silica nanoparticle; reverse microemulsion; size dependent; bactericidal; antibacterial; ANTIBACTERIAL ACTIVITY; SILVER NANOPARTICLES; ESCHERICHIA-COLI; REACTIVE OXYGEN; ZINC-OXIDE; MICROEMULSION; PARTICLES; TOXICITY; NANOCOMPOSITES; NANOSILVER;
D O I
10.1021/nn202054f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A reverse microemulsion synthesis was used to prepare amine-functionalized silica nanoparticles of three distinct sizes (i.e., 50, 100, and 200 nm) with similar amine content. The resulting hybrid nanoparticles, consisting of N-(6-aminohexyl)aminopropyltrimethoxysilane and tetraethoxysilane, were highly monodisperse in size. N-Diazeniumdiolate nitric oxide (NO) donors were subsequently formed on secondary amines while controlling reaction conditions to keep the total amount of NO released constant for each Particle size. The bactericidal efficacy of the NO-releasing nanoparticies against Pseudomonas aeruginosa increased with decreasing particle size. Additionally, smaller diameter nanoparticles were found to associate with the bacteria at a faster rate and to a greater extent than larger particles. Neither control (non-NO-releasing) nor NO-releasing particles exhibited toxicity toward L929 mouse fibroblasts at concentrations above their respective minimum bactericidal concentrations. This study represents the first investigation of the bactericidal efficacy of NO-releasing silica nanoparticles as a function of particle size.
引用
收藏
页码:7235 / 7244
页数:10
相关论文
共 60 条
[1]   Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions [J].
Adams, Laura K. ;
Lyon, Delina Y. ;
Alvarez, Pedro J. J. .
WATER RESEARCH, 2006, 40 (19) :3527-3532
[2]   CHARACTERIZATION OF BONDED PHASES BY SOLID-STATE NMR-SPECTROSCOPY [J].
ALBERT, K ;
BAYER, E .
JOURNAL OF CHROMATOGRAPHY, 1991, 544 (1-2) :345-370
[3]   Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles [J].
Anyaogu, Kelechi C. ;
Fedorov, Andrei V. ;
Neckers, Douglas C. .
LANGMUIR, 2008, 24 (08) :4340-4346
[4]   Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems [J].
Armelao, Lidia ;
Barreca, Davide ;
Bottaro, Gregorio ;
Gasparotto, Alberto ;
Maccato, Chiara ;
Maragno, Cinzia ;
Tondello, Eugenio ;
Stangar, Urska Lavrencic ;
Bergant, Martina ;
Mahne, Dunja .
NANOTECHNOLOGY, 2007, 18 (37)
[5]   Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration [J].
Arriagada, FJ ;
Osseo-Asare, K .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 211 (02) :210-220
[6]   Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding [J].
Bagwe, RP ;
Hilliard, LR ;
Tan, WH .
LANGMUIR, 2006, 22 (09) :4357-4362
[7]   Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method [J].
Bagwe, RP ;
Yang, CY ;
Hilliard, LR ;
Tan, WH .
LANGMUIR, 2004, 20 (19) :8336-8342
[8]   Silica particles:: A novel drug-delivery system [J].
Barbé, C ;
Bartlett, J ;
Kong, LG ;
Finnie, K ;
Lin, HQ ;
Larkin, M ;
Calleja, S ;
Bush, A ;
Calleja, G .
ADVANCED MATERIALS, 2004, 16 (21) :1959-1966
[9]   Microwave-assisted polyol synthesis of Cu nanoparticles [J].
Blosi, M. ;
Albonetti, S. ;
Dondi, M. ;
Martelli, C. ;
Baldi, G. .
JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (01) :127-138
[10]   Endogenous nitric oxide synthesis: Biological functions and pathophysiology [J].
Bredt, DS .
FREE RADICAL RESEARCH, 1999, 31 (06) :577-596