Manganese is the link between frataxin and iron-sulfur deficiency in the yeast model of Friedreich ataxia

被引:55
作者
Irazusta, V [1 ]
Cabiscol, E [1 ]
Reverter-Branchat, G [1 ]
Ros, J [1 ]
Tamarit, J [1 ]
机构
[1] Univ Lleida, Dept Ciencies Med Basiques, Fac Med, Grp Bioquim Estres Oxidatiu, Lleida 25008, Spain
关键词
D O I
10.1074/jbc.M511649200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Friedreich ataxia is a human neurodegenerative and myocardial disease caused by decreased expression of the mitochondrial protein frataxin. Proteomic analysis of the mutant yeast model of Friedreich ataxia presented in this paper reveals that these cells display increased amounts of proteins involved in antioxidant defenses, including manganese-superoxide dismutase. This enzyme shows, however, lower activity than that found in wild type cells. Our results indicate that this lack of activity is a consequence of cellular manganese deficiency, because in manganese-supplemented cultures, cell manganese content, and manganese-superoxide dismutase activity were restored. One of the hallmarks of Friedreich ataxia is the decreased activity of iron/sulfur-containing enzymes. The activities of four enzymes of this group (aconitase, glutamate synthase, succinate dehydrogenase, and isopropylmalate dehydratase) have been analyzed for the effects of manganese supplementation. Enzyme activities were recovered by manganese treatment, except for aconitase, for which, a specific interaction with frataxin has been demonstrated previously. Similar results were obtained when cells were grown in iron-limited media suggesting that manganese-superoxide dismutase deficiency is a consequence of iron overload. In conclusion, these data indicate that generalized deficiency of iron-sulfur protein activity could be a consequence of manganese-superoxide dismutase deficiency, and consequently, it opens new strategies for Friedreich ataxia treatment.
引用
收藏
页码:12227 / 12232
页数:6
相关论文
共 50 条
[1]   Asymmetric inheritance of oxidatively damaged proteins during cytokinesis [J].
Aguilaniu, H ;
Gustafsson, L ;
Rigoulet, M ;
Nyström, T .
SCIENCE, 2003, 299 (5613) :1751-1753
[2]   Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin [J].
Babcock, M ;
deSilva, D ;
Oaks, R ;
DavisKaplan, S ;
Jiralerspong, S ;
Montermini, L ;
Pandolfo, M ;
Kaplan, J .
SCIENCE, 1997, 276 (5319) :1709-1712
[3]   Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion [J].
Bulteau, AL ;
Lundberg, KC ;
Ikeda-Saito, M ;
Isaya, G ;
Szweda, LI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (17) :5987-5991
[4]   Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity [J].
Bulteau, AL ;
O'Neill, HA ;
Kennedy, MC ;
Ikeda-Saito, M ;
Isaya, G ;
Szweda, LI .
SCIENCE, 2004, 305 (5681) :242-245
[5]  
Cabiscol E, 2000, J BIOL CHEM, V275, P27393
[6]   The expression of human mitochondrial ferritin rescues respiratory function infrataxin-deficient yeast [J].
Campanella, A ;
Isaya, G ;
O'Neill, HA ;
Santambrogio, P ;
Cozzi, A ;
Arosio, P ;
Levi, S .
HUMAN MOLECULAR GENETICS, 2004, 13 (19) :2279-2288
[7]   Friedreich's ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion [J].
Campuzano, V ;
Montermini, L ;
Molto, MD ;
Pianese, L ;
Cossee, M ;
Cavalcanti, F ;
Monros, E ;
Rodius, F ;
Duclos, F ;
Monticelli, A ;
Zara, F ;
Canizares, J ;
Koutnikova, H ;
Bidichandani, SI ;
Gellera, C ;
Brice, A ;
Trouillas, P ;
DeMichele, G ;
Filla, A ;
DeFrutos, R ;
Palau, F ;
Patel, PI ;
DiDonato, S ;
Mandel, JL ;
Cocozza, S ;
Koenig, M ;
Pandolfo, M .
SCIENCE, 1996, 271 (5254) :1423-1427
[8]   Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae [J].
Cavadini, P ;
Gellera, C ;
Patel, PI ;
Isaya, G .
HUMAN MOLECULAR GENETICS, 2000, 9 (17) :2523-2530
[9]   Disabled early recruitment of antioxidant defenses in Friedreich's ataxia [J].
Chantrel-Groussard, K ;
Geromel, V ;
Puccio, H ;
Koenig, M ;
Munnich, A ;
Rötig, A ;
Rustin, P .
HUMAN MOLECULAR GENETICS, 2001, 10 (19) :2061-2067
[10]  
Chen XJ, 2005, SCIENCE, V307, P714, DOI 10.1126/science.1106391