Nonlinear regularized reaction-diffusion filters for denoising of images with textures

被引:46
作者
Plonka, Gerfind [1 ]
Ma, Jianwei [2 ]
机构
[1] Univ Duisburg Essen, Dept Math, D-47048 Duisburg, Germany
[2] Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
denoising; digital TV; reaction-difffusion; regularization; second-generation curvelets; wave atoms;
D O I
10.1109/TIP.2008.925305
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Denoising is always a challenging problem in natural imaging and geophysical data processing. In this paper, we consider the denoising of texture images using a nonlinear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet shrinkage is used for regularization of the diffusion process to preserve important features in the diffusion smoothing and a wave atom shrinkage is used as the reaction in order to preserve and enhance interesting oriented textures. We derive a digital reaction-diffusion filter that lives on graphs and show convergence of the corresponding iteration process. Experimental results and comparisons show very good performance of the proposed model for texture-preserving denoising.
引用
收藏
页码:1283 / 1294
页数:12
相关论文
共 52 条
[1]   Oriented texture completion by AM-FM reaction-diffusion [J].
Acton, ST ;
Mukherjee, DP ;
Havlicek, JP ;
Bovik, AC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2001, 10 (06) :885-896
[2]  
Alvarez L, 1997, SIAM J APPL MATH, V57, P153
[3]   Modeling very oscillating signals. Application to image processing [J].
Aubert, G ;
Aujol, JF .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 51 (02) :163-182
[4]   Dual norms and image decomposition models [J].
Aujol, JF ;
Chambolle, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 63 (01) :85-104
[5]   A well-balanced flow equation for noise removal and edge detection [J].
Barcelos, CAZ ;
Boaventura, M ;
Silva, EC .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (07) :751-763
[6]   Adaptive regularized constrained least squares image restoration [J].
Berger, T ;
Strömberg, JO ;
Eltoft, T .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (09) :1191-1203
[7]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[8]  
Candes E.J., 2000, CURVELETS SURPRISING
[9]   New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities [J].
Candès, EJ ;
Donoho, DL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (02) :219-266
[10]   Fast discrete curvelet transforms [J].
Candes, Emmanuel ;
Demanet, Laurent ;
Donoho, David ;
Ying, Lexing .
MULTISCALE MODELING & SIMULATION, 2006, 5 (03) :861-899