Nonlinear regularized reaction-diffusion filters for denoising of images with textures

被引:46
作者
Plonka, Gerfind [1 ]
Ma, Jianwei [2 ]
机构
[1] Univ Duisburg Essen, Dept Math, D-47048 Duisburg, Germany
[2] Tsinghua Univ, Sch Aerosp, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
denoising; digital TV; reaction-difffusion; regularization; second-generation curvelets; wave atoms;
D O I
10.1109/TIP.2008.925305
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Denoising is always a challenging problem in natural imaging and geophysical data processing. In this paper, we consider the denoising of texture images using a nonlinear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet shrinkage is used for regularization of the diffusion process to preserve important features in the diffusion smoothing and a wave atom shrinkage is used as the reaction in order to preserve and enhance interesting oriented textures. We derive a digital reaction-diffusion filter that lives on graphs and show convergence of the corresponding iteration process. Experimental results and comparisons show very good performance of the proposed model for texture-preserving denoising.
引用
收藏
页码:1283 / 1294
页数:12
相关论文
共 52 条
[31]   Combined curvelet shrinkage and nonlinear anisotropic diffusion [J].
Ma, Jianwei ;
Plonka, Gerlind .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (09) :2198-2206
[32]   Curvelet-based snake for multiscale detection and tracking of geophysical fluids [J].
Ma, Jianwei ;
Antoniadis, Anestis ;
Le Dimet, Francois-Xavier .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (12) :3626-3638
[33]  
MEYER Y, 2001, U LECT SER, V22
[34]   A segmentation-based regularization term for image deconvolution [J].
Mignotte, Max .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (07) :1973-1984
[35]   Local strong homogeneity of a regularized estimator [J].
Nikolova, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (02) :633-658
[36]  
NORDSTROM KN, 1990, IMAGE VISION COMPUT, V8, P318, DOI 10.1016/0262-8856(90)80008-H
[37]   An iterative regularization method for total variation-based image restoration [J].
Osher, S ;
Burger, M ;
Goldfarb, D ;
Xu, JJ ;
Yin, WT .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :460-489
[38]   Image decomposition and restoration using total variation minimization and the H-1 norm [J].
Osher, S ;
Solé, A ;
Vese, L .
MULTISCALE MODELING & SIMULATION, 2003, 1 (03) :349-370
[39]   SCALE-SPACE AND EDGE-DETECTION USING ANISOTROPIC DIFFUSION [J].
PERONA, P ;
MALIK, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :629-639
[40]  
PLONKA G, 2008, RESULTS MATH UNPUB