Characteristics of high-confinement modes in Alcator C Mod

被引:16
作者
Snipes, JA
Boivin, RL
Christensen, C
Fiore, C
Garnier, D
Goetz, J
Golovato, SN
Graf, M
Granetz, RS
Greenwald, M
Hubbard, A
Hutchinson, IH
Irby, J
LaBombard, B
Marmar, ES
Niemczewski, A
OShea, P
Porkolab, M
Stek, P
Takase, Y
Terry, JL
Umansky, M
Wolfe, SM
机构
[1] Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge
关键词
D O I
10.1063/1.871995
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The regime of high particle and energy confinement known as the H mode [Phys. Rev. Lett. 49, 1408 (1982)] has been extended to a unique range of operation for divertor tokamaks up to toroidal fields of nearly 8 T, line-averaged electron densities of 3 X 10(20) m(-3), and surface power densities of nearly 0.6 MW/m(2) in the compact high-field tokamak Alcator C Mod [Phys. Plasmas 1, 1511 (1994)]. H modes are achieved in Alcator C Mod with Ion Cyclotron Resonant Frequency (ICRF) heating and with Ohmic heating alone without boronization of the all molybdenum tiled first wall. Large increases in charge exchange flux are observed during the H mode over the entire range of energies from 2 to 10 keV. There appears to be an upper limit to the midplane neutral pressure, of about 0.08 Pa above which no H modes have been observed. The plasmas with the best energy confinement have the lowest midplane neutral pressures, below 0.01 Pa. There is an edge electron temperature threshold such that T-e greater than or equal to 280 eV +/-40 eV for sustaining the H mode, which is equal at L-H and H-L transitions. The hysteresis in the threshold power between L-H and H-L transitions is less than 25% on average. Both core and edge particle confinement improve by a factor of 2-4 from L mode to H mode. Energy confinement also improves by up to a factor of 2 over L mode. (C) 1996 American Institute of Physics.
引用
收藏
页码:1992 / 1998
页数:7
相关论文
共 26 条
[21]   REGIME OF IMPROVED CONFINEMENT AND HIGH-BETA IN NEUTRAL-BEAM-HEATED DIVERTOR DISCHARGES OF THE ASDEX TOKAMAK [J].
WAGNER, F ;
BECKER, G ;
BEHRINGER, K ;
CAMPBELL, D ;
EBERHAGEN, A ;
ENGELHARDT, W ;
FUSSMANN, G ;
GEHRE, O ;
GERNHARDT, J ;
VONGIERKE, G ;
HAAS, G ;
HUANG, M ;
KARGER, F ;
KEILHACKER, M ;
KLUBER, O ;
KORNHERR, M ;
LACKNER, K ;
LISITANO, G ;
LISTER, GG ;
MAYER, HM ;
MEISEL, D ;
MULLER, ER ;
MURMANN, H ;
NIEDERMEYER, H ;
POSCHENRIEDER, W ;
RAPP, H ;
ROHR, H ;
SCHNEIDER, F ;
SILLER, G ;
SPETH, E ;
STABLER, A ;
STEUER, KH ;
VENUS, G ;
VOLLMER, O ;
YU, Z .
PHYSICAL REVIEW LETTERS, 1982, 49 (19) :1408-1412
[22]  
WEISEN H, IN PRESS PLASMA PHYS
[23]   WALL CONDITIONING OF FUSION DEVICES BY REACTIVE PLASMAS [J].
WINTER, J .
JOURNAL OF NUCLEAR MATERIALS, 1989, 161 (03) :265-330
[24]   FLUCTUATIONS AND ANOMALOUS TRANSPORT (IN TOKAMAKS, PARTICULARLY TEXT) [J].
WOOTTON, AJ ;
AUSTIN, ME ;
BENGTSON, RD ;
BOEDO, JA ;
BRAVENEC, RV ;
BROWER, DL ;
CHEN, JY ;
CIMA, G ;
DIAMOND, PH ;
DURST, RD ;
EDMONDS, PH ;
FAN, SP ;
FOSTER, MS ;
FORSTER, JC ;
GANDY, R ;
GENTLE, KW ;
HICKOK, RL ;
HEY, YX ;
KIM, SK ;
KIM, YJ ;
LIN, H ;
LUHMANN, NC ;
MCCOOL, SC ;
MINER, WH ;
OUROUA, A ;
PATTERSON, DM ;
PEEBLES, WA ;
PHILLIPS, PE ;
RICHARDS, B ;
RITZ, CP ;
RHODES, TL ;
ROSS, DW ;
ROWAN, WL ;
SCHOCH, PM ;
SING, D ;
SYNAKOWSKI, EJ ;
TERRY, PW ;
WENZEL, KW ;
WILEY, JC ;
YANG, XZ ;
YU, XH ;
ZHANG, Z ;
ZHENG, SB .
PLASMA PHYSICS AND CONTROLLED FUSION, 1988, 30 (11) :1479-1491
[25]   SCALINGS FOR TOKAMAK ENERGY CONFINEMENT [J].
YUSHMANOV, PN ;
TAKIZUKA, T ;
RIEDEL, KS ;
KARDAUN, OJWF ;
CORDEY, JG ;
KAYE, SM ;
POST, DE .
NUCLEAR FUSION, 1990, 30 (10) :1999-2006
[26]  
1993, PLASMA PHYS CONTROLL, V35, pB23